Topologically minimal surfaces in 3-manifolds

Topologically minimal surfaces in 3-manifolds

-
David Bachman, Pitzer College
Fine Hall 322

Topologically minimal surfaces are the topological analogue of geometrically minimal surfaces. Such surfaces generalize well known classes, such as incompressible, strongly irreducible (or weakly incompressible), and critical surfaces. Applications include problems dealing with stabilization, amalgamation, and isotopy of Heegaard splittings and bridge spheres for knots. In this talk we will review the basic definitions and discuss both existing and potential applications of this new theory.