# Gravity wave-borne vortices

# Gravity wave-borne vortices

In this talk, we’ll present some recent work on traveling waves in water that carry vortices in their bulk. We show that for any supercritical Froude number (non-dimensionalized wave speed), there exists a continuous one-parameter family of solitary waves with a submerged point vortex in equilibrium. This family bifurcates from an irrotational laminar flow, and, at least for large Froude numbers, it extends up to the development of a surface singularity. These are the first rigorously constructed gravity wave-borne point vortices without surface tension, and notably our formulation allows the free surface to be overhanging. Through a separate numerical study, we find strong evidence that many of the waves do indeed have an overturned air—water interfaces. Finally, we prove that generically one can perform a desingularization procedure to obtain a solitary wave with a submerged hollow vortex. Physically, these can be thought of as traveling waves carrying spinning bubbles of air in their bulk.

We will also discuss some work in progress on the existence of imploding vortex configurations that experience finite-time self-similar collapse.

This is joint work with Ming Chen, Kristoffer Varholm, and Miles Wheeler.