State-of-the-art Computer Simulations of Supernova Explosions

State-of-the-art Computer Simulations of Supernova Explosions

-
Adam Burrows, Princeton University
Fine Hall 214

To simulate supernova explosions, one must solve simultaneously the non-linear, coupled partial differential equations of radiation hydrodynamics. What's more, due to a variety of instabilities and asymmetries, this must eventually be accomplished in 3D. The current state-of-the-art is 2D, plus rotation and magnetic fields (assuming axisymmetry). Nevertheless, with the current suite of codes, we have been able to explore the evolution of the high-density, high-temperature, high-speed environment at the core of a massive star at death. It is in this core that the supernova explosion is launched. However, the complexity of the problem has to date obscured the essential physics and mechanisms of the phenomenon, making it indeed one of the "Grand Challenges" of 21st century astrophysics. Requiring forefront numerical algorithms and massive computational resources, the resolution of this puzzle awaits the advent of peta- and exa-scale architectures and the software to efficiently use them. In this talk, I will review the current state of the science and simulations as we plan for the fully 3D, multi-physics capabilities that promise credibly to crack open this obdurate astrophysical nut.