Singular moduli for real quadratic fields

Singular moduli for real quadratic fields

-
Jan Vonk, Oxford University
IAS - Simonyi Hall Seminar Room SH-101

The theory of complex multiplication describes finite abelian extensions of imaginary quadratic number fields using singular moduli, which are special values of modular functions at CM points. I will describe joint work with Henri Darmon in the setting of real quadratic fields, where we construct p-adic analogues of singular moduli through classes of rigid meromorphic cocycles. I will discuss p-adic counterparts for our proposed RM invariants of classical relations between singular moduli and analytic families of Eisenstein series.