Renormalization, fractal geometry and the Newhouse phenomenon

-
Artur Avila, University of Zurich
Fine Hall 314

As discovered by Poincaré in the end of the 19th century, even small perturbations of very regular dynamical systems may display chaotic features, due to complicated interactions near a homoclinic point. In the 1960's Smale attempted to understand such dynamics in term of a stable model, the horseshoe, but this was too optimistic.Indeed, Newhouse showed that even in only two  dimensions, a homoclinic bifurcation gives rise to particular wild dynamics, such as the generic presence  of infinitely many attractors. This Newhouse phenomenon is associated to a renormalization mechanism, but also with particular geometric properties of some fractal sets within a Smale horseshoe. When considering two-dimensional complex dynamics those fractal sets become much more beautiful but unfortunately also more difficult to handle.