Geometry of the space of probability measures

Geometry of the space of probability measures

-
John Lott, University of California, Berkeley
Fine Hall 214

The space of probability measures, on a compact Riemannian manifold, carries the Wasserstein metric coming from optimal transport. Otto found a remarkable formal Riemannian metric on this infinite-dimensional space. It is a challenge to make rigorous sense of the ensuing formal calculations, within the framework of metric geometry. I will describe what is known about geodesics, curvature, tangent spaces (cones) and parallel transport.