Collective motion and decision-making in animal groups

-
Iain Couzin, Princeton University
Fine Hall 214

Animal groups such as bird flocks, insect swarms and fish schools are spectacular, ecologically important and sometimes devastating features of the biology of various species. Outbreaks of the desert locust, for example, can invade approximately one fifth of the Earth's land surface and are estimated to affect the livelihood of one in ten people on the planet. Using a combined theoretical and experimental approach involving insect and vertebrate groups I will address how, and why, individuals move in unison and investigate the principals of information transfer in these groups, particularly focusing on leadership and collective consensus decision-making.For very large animal groups, despite huge differences in the size and cognitive abilities of group members, recent models from theoretical physics ('self-propelled particle,' SPP, models) have suggested that general principles underlie collective motion. Such models demonstrate that some group-level properties may be largely independent of the types of animals involved. I shall present recent experimental work on locusts that validates some of the predictions of simple mechanistic models including a density-dependent "phase transition" from disordered to ordered motion.
Details of the mechanism by which individuals interact, however, also provide important biological insights into swarm behaviour. Using laboratory studies involving nerve manipulation and field experiments we demonstrate that some swarming insects are in effect on a "forced march" driven by cannibalism.
These results will be discussed in the context of the evolution of functional complexity and pattern formation in biological systems.