A combinatorial spanning tree model for knot Floer homology

John Baldwin, Princeton University
Fine Hall 314

I'll describe a new combinatorial method for computing the delta-graded knot Floer homology of a link in S3. Our construction comes from iterating an unoriented skein exact triangle discovered by Manolescu, and yields a chain complex for knot Floer homology which is reminiscent of that of Khovanov homology, but is generated (roughly) by spanning trees of the black graph of the link. This is joint work with Adam Levine.