Stochastic Models in Robotics and Structural Biology

-
Gregory Chikikjian, Johns Hopkins University
Fine Hall 214

Many stochastic problems of interest in engineering and science involve random rigid-body motions. In this talk, a variety of stochastic phenomena that evolve on the group of rigid-body motions will be discussed together with tools from harmonic analysis and Lie theory to solve the associated equations. These include mobile robot path planning, statistical mechanics of DNA, and problems in image processing. Current work on multi-robot team diagnosis and repair, information fusion, and self-replicating robots will also be discussed. In order to quantify the robustness of such robots, measures of the degree of environmental uncertainty that they can handle need to be computed. The entropy of the set of all possible arrangements (or configurations) of spare parts in the environment is such a measure, and has led us to study problems at the foundations of statistical mechanics and information theory. These, and other, topics in robotics and structural biology lend themselves to the same mathematical tools, which will be discussed in this talk.