Relative Langlands and endoscopy

Spencer Leslie, Boston College
Fine Hall 214

Spherical varieties play an important role in the study of periods of automorphic forms. But very closely related varieties can lead to very distinct arithmetic problems. Motivated by applications to relative trace formulas, we discuss the natural question of distinguishing different forms of a given spherical variety in arithmetic settings, giving a solution for symmetric varieties. It turns out that the answer is intimately connected with the construction of the dual Hamiltonian variety associated with the symmetric variety by Ben-Zvi, Sakellaridis, and Venkatesh. I will explain the source of these questions in the theory of endoscopy for symmetric varieties, with application to the (pre-)stabilization of relative trace formulas.

Meeting ID:  920 2195 5230

Passcode:    The three-digit integer that is the cube of the sum of its digits.