Floer and Khovanov homologies of band sums

Floer and Khovanov homologies of band sums

-
Joshua Wang, Harvard University
Fine Hall 314

In-Person and Online Talk 

Zoom link: https://princeton.zoom.us/j/453512481?pwd=OHZ5TUJvK2trVVlUVmJLZkhIRHFDUT09

Given a nontrivial band sum of two knots, we may add full twists to the band to obtain a family of knots indexed by the integers. In this talk, I’ll show that the knots in this family have the same Heegaard knot Floer homology and the same instanton knot Floer homology but distinct Khovanov homology, generalizing a result of M. Hedden and L. Watson. A key component of the argument is a proof that each of the three knot homologies detects the trivial band. The main application is a verification of the generalized cosmetic crossing conjecture for split links.