# Seminars & Events for Analysis of Fluids and Related Topics

##### Global well-posedness for the 2D Muskat problem

The Muskat problem was originally introduced by Muskat in order to model the interface between water and oil in tar sands. In general, it describes the interface between two incompressible, immiscible fluids of different constant densities in a porous media. In this talk I will prove the existence of global, smooth solutions to the 2D Muskat problem in the stable regime whenever the initial data is monotonic or has slope strictly less than 1. The curvature of these solutions solutions decays to 0 as $t$ goes to infinity, and they are unique when the initial data is $C^{1,\epsilon}$. We do this by constructing a modulus of continuity generated by the equation, just as Kiselev, Naverov, and Volberg did in their proof of the global well-posedness for the quasi-geostraphic equation.

##### TBA-Minh Binh Tran

##### TBA-Sam Punshon-Smith

##### The optimal design of wall-bounded heat transport

Flowing a fluid is a familiar and efficient way to cool: fans cool electronics, water cools nuclear reactors, and the atmosphere cools the Earth. In this talk, we discuss a class of problems from fluid dynamics concerning the design of incompressible wall-bounded flows achieving optimal rates of heat transport for a given flow intensity budget. Guided by a perhaps unexpected connection between this optimal design problem and various “energy-driven pattern formation” problems from materials science, we construct flows achieving nearly optimal rates of heat transport in their scaling with respect to the intensity budget. The resulting flows share striking similarities with self-similar elastic wrinkling patterns, such as can be seen in the shape of a hanging drape or nearby the edge of a torn plastic sheet.