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2-Dimensional Case

Let M be a compact Riemann surface and

f : C→ M

a nonconstant holomorphic map.

What type of surface can M be?

By the uniformization theorem, the universal cover X of M is
D, C or Ĉ.

X

C M

p

f

f̃
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2-Dimensional Case
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If X = D, then f is constant.

If X = Ĉ, then M = Ĉ.

If X = C, then M ' S1 × S1.

How can we generalize this to higher dimensions?
conformal → quasiconformal
holomorphic → quasiregular
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Quasiregular Maps

Let M be a closed, connected, orientable Riemannian manifold.

Defintion

A map f : Rn → M is K -quasiregular if f ∈W 1,n
loc (Rn), f is

nonconstant and
||Df ||n ≤ KJf

A homeomorphic K -quasiregular map is K -quasiconformal.

A 1-quasiregular map in dimension 2 is holomorphic.

Question

What manifolds admit quasiregular maps (quasiregularly elliptic)?
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Revisit C

A quasiregular map f : C→ M can always be decomposed

f = g ◦ φ

where φ : C→ C is quasiconformal and g : C→ M is holomorphic
(Stöılow’s theorem).
So in dimension 2 the question of quasiregular ellipticity reduces to
the holomorphic case.
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Higher Dimensions

Proposition (Bonk and Heinonen ’01)

If there exists a 1-quasiregular map f : Rn → M, then M is
conformally equivalent to a quotient of Sn or T n.

1-quasiregular is a restrictive condition in higher dimensions.

This is also true for 1-quasiconformal maps, which are locally
Möbius transformations for n ≥ 3 (Liouville’s theorem,
Liouville 1850, Gehring ’62, Reshetnyak ’67).

So instead study K -quasiregular maps for K ≥ 1.
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Fundamental Group

In dimension 2, the fundamental group was the main obstruction
for admitting holomorphic maps.

Theorem (Varopoulos)

If M is an n-dimensional Riemannian manifold that is quasiregularly
elliptic, then π1(M) has a growth order bounded above by n.

Proof relies on lifting f to a noncompact universal covering
space.

As in dimension 2, this result is independent of the distortion
K .

Gromov (’81) asked whether there exists a simply connected
manifold that is not quasiregularly elliptic.
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K -Dependency

The situation is not identical for K = 1 and K > 1.

Theorem (Rickman ’80)

A K -quasiregular map f : Rn → Sn can omit at most
C (n,K )-points.

Theorem (Rickman ’85, Drasin and Pankka ’15)

For N ∈ N, there exists a quasiregular map f : Rn → Sn that omits
N points.

In higher dimensions, the distortion constant can lead to
different results.
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K -Dependency

We can look for obstructions in other invariants besides the
fundamental group.

Theorem (Bonk and Heinonen ’01)

If M is K -quasiregularly elliptic, then

dimH l(M) ≤ C (n, l ,K ),

where H l(M) is the degree l de Rham cohomology of M.

They conjecture that C (n, l ,K ) =
(n
l

)
, which is attained since T n

is quasiregularly elliptic.
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Dynamic Result

Theorem (Kangasniemi ’17)

If M admits a noninjective uniformly quasiregular map, then

dimH l(M) ≤
(
n

l

)
.

A result by Martin, Volker and Peltonen (’06) gives that M is
quasiregularly elliptic.

Proof uses pointwise orthogonality properties of rescaled
differential forms on M.
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Main Result

What about the case when M is not assumed to admit a uniformly
quasiregular map?

Theorem (P. ’18)

If M is quasiregularly elliptic, then

dimH l(M) ≤
(
n

l

)

This bound is optimal because T n is quasiregularly elliptic.
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Main Result

Corollary (P. ’18)

There exist simply connected manifolds that are not quasiregularly
elliptic.

For example, M = #m(S2 × S2) for m ≥ 4.

Theorem (Rickman ’06)

(S2 × S2)#(S2 × S2) is quasiregularly elliptic.
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Outline of the Proof

Using f , pull back Poincaré pairs on M.

Rescale the forms in Rn to get a collection of differential
forms on B(0, 1).

The rescaled forms are then pointwise orthogonal, which says
that the number of forms should be bounded above by
dim

∧l Rn =
(n
l

)
.

This uses a weak reverse Hölder inequality for Jacobians of
quasiregular maps into manifolds with nontrivial cohomology.
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Rescaling Procedure I

In the proof of the Bonk and Heinonen result the authors use a
rescaling procedure on the map f : Rn → M.

This gives that f is uniformly Hölder continuous.

Instead of rescaling the map f , rescale the pullbacks of differential
forms.

If α ∈ Ωl(M), let η = f ∗α. Let Bj = B(aj , rj) ⊂ Rn be a
sequence of balls such that

A(Bj) :=

∫
Bj

Jf →∞.

Define

ηj =
1

A(Bj)1/p
T ∗j (η)

where Tj(x) = aj + rjx , p = n/l .
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Rescaling Procedure II

ηj =
1

A(Bj)1/p
T ∗j (η)

Rescaling functions in the Rickman-Picard theorem context was
used in a paper by Eremenko and Lewis ’91.

They rescale A-harmonic functions of the form log |f | to get
functions on B(0, 1).

The new functions satisfy strong pointwise estimates.

Rescaling forms on M was used by Kangasniemi in the dynamical
counterpart of the theorem.

The rescaled forms satisfy pointwise orthogonality.

Eden Prywes Quasiregular Ellipticity



Rescaling Procedure III

∫
B(0,1)

|ηj |p =
1

A(Bj)

∫
Bj

|f ∗α|n/l

≤ ||α||∞
A(Bj)

∫
Bj

||Df ||n

≤ K ||α||∞
A(Bj)

∫
Bj

Jf

= K ||α||∞

So ηj is uniformly bounded in Lp(B(0, 1)) and has a convergent
subsequence in the weak topology.
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Example of Rescaling I

M = T 2 and f (z) = ez .
H1(T 2) ∼= {adz + bdz̄ : a, b ∈ R}.

η = f ∗dz = ezdz

In the rescaling, need Bj such that

A(Bj)→∞
A(Bj) ≤ CA( 1

2Bj)

where

A(B) =

∫
B
Jf

Bj = B(j , 1) works. On B(0, 1),

ηj =
1

A(Bj)1/2
e j+zdz ∼ e j

e j
ezdz
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Example of Rescaling II

In the limit,
ηj → ezdz

Similarly, for θ = f ∗dz̄ ,
θj → e z̄dz̄

Let ω on B(0, 1) be a differential form such that

ω ∧ ezdz = ω ∧ e z̄dz̄ = 0

Conclude that ω = 0 on B(0, 1).
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Orthogonality

If k = dimH l(M), then let (α1, β1), . . . , (αk , βk) be Poincaré pairs
on M. ∫

M
αa ∧ βb = δab

So, if ηa = f ∗αa and θb = f ∗βb, then in the rescaling

η̃a ∧ θ̃b = 0

a 6= b, for almost every x ∈ B(0, 1).
So Za = {x ∈ B(0, 1) : ηa(x) = 0} cover B(0, 1).
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Equidistribution of f

Since f is quasiregular, it satisfies equidistribution properties as a
map into M.
Let α ∈ Ωl(M), β ∈ Ωn−l(M),

lim
j→∞

∣∣∣∣ 1∫
Bj

(ψ ◦ Tj)Jf

∫
Bj

(ψ ◦ Tj)f
∗(α ∧ β)− 1

∣∣∣∣ = 0

when ∫
M
α ∧ β = 1

and ψ ∈ C∞c (B(0, 1)).∫
B(0,1)

ψη̃a ∧ θ̃a ∼ lim
j→∞

∫
Bj

(ψ ◦ Tj)Jf
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Jf is Nonzero

By the orthogonality condition, the sets
Za = {x ∈ B(0, 1) : ηa(x) = 0} cover B(0, 1). So on Bj ,∫

Tj (Za)
Jf ≥ CA(Bj)

for one of the ηa. But

1

A(Bj)

∫
Ti (Za)

Jf ∼
∫
Tj (Za)

ηa,j ∧ θa,j → 0.

This gives a contradiction, which implies that dimH l(M) ≤
(n
l

)
.
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Reverse Hölder Inequality I

In the argument above actually need to use a reverse Hölder
inequality for Jf .

Theorem (Bojarski and Iwaniec ’83)

Let f : Rn → Rn be a K -quasiregular map. Then f ∈W 1,nq
loc (Rn)

for 1 < q ≤ Q(n,K ), where Q(n,K ) depends only on n and K . If
B ⊂ Rn is a ball, then(∫

1
2
B
Jqf

)1/q

≤ C (n, q,K )
1

|B|1/q′
∫
B
Jf (1)

where 1
q + 1

q′ = 1. Crucially, C (n, q,K ) is independent of f and B.

This theorem does not directly apply since f : Rn → M. If
H l(M) = 0 for 1 ≤ l ≤ n − 1, then the theorem does not
necessarily hold.
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Reverse Hölder Inequality II

In our case there is an l so that H l(M) 6= 0.

Proposition

Let M be a closed Riemannian manifold and let f : Rn → M be
K -quasiregular. If there exists an integer l with 1 ≤ l ≤ n − 1 such
that H l(M) 6= 0, then the Jacobian of f satisfies the weak reverse
Hölder inequality,

1

|12B|

∫
1
2
B
Jf ≤ C (n,M,K )

(
1

|B|

∫
B
J
n/(n+1)
f

)(n+1)/n

,

where B ⊂ Rn is an arbitrary ball.

Once the proposition is shown, then the reverse Hölder
inequality for an exponent b > 1 follows from Gehring’s
lemma.
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Proof of the Proposition

Since H l(M) 6= 0, there exists as before a Poincaré pair, α and β,
so that ∫

M
α ∧ β = 1.

Through this, ∫
B
Jf ∼

∫
B
f ∗α ∧ f ∗β.

And dα = 0, so on B, f ∗α = du.
If ψ ∈ C∞c (B), then∣∣∣∣∫

B
ψdu ∧ f ∗β

∣∣∣∣ =

∣∣∣∣∫
B
dψ ∧ u ∧ f ∗β

∣∣∣∣
≤ ||dψ||∞||u||s ||f ∗β||t
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∫
B
ψf ∗(α ∧ β) ≤ ‖dψ‖∞‖u‖s‖f ∗β‖t

For a suitable ψ,

‖dψ‖∞ ≤
1

|B|1/n
.

The Poincaré-Sobolev inequality for differential forms (Iwaniec and
Lutoborski ’93) gives

‖u‖s ≤ ‖f ∗α‖s∗

|f ∗α| ≤ CJ
l/n
f and |f ∗β| ≤ CJ

(n−l)/n
f

Choosing exponents correctly gives the reverse Hölder inequality
for Jf .
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Further questions

What about the case when M is not compact?

For n = 2, M ' C or S1 × R.
For n > 2, the answer must depend on K by the
Rickman-Picard theorem.

Does there exist a quasiregularly elliptic manifold where the
quasiregular map does not factor through the torus?

If #3S2 × S2 is quasiregularly elliptic, then the map cannot
factor through the torus (Pankka and Souto ’12).

Suppose dimH l(M) =
(n
l

)
, what does this imply about M?

For l = 1, there must exist a covering map p : T n → M
(Luisto and Pankka ’16).
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Thank you!
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