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2-Dimensional Case

Let M be a compact Riemann surface and
f:C—>M

a nonconstant holomorphic map.
@ What type of surface can M be?

o By the uQiformization theorem, the universal cover X of M is
D, C or C.

X

o

C
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2-Dimensional Case

X
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e If X =D, then f is constant.
o If X =C, then M = C.
e If X =C, then M ~ St x S1.

How can we generalize this to higher dimensions?
conformal — quasiconformal
holomorphic — quasiregular
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Quasiregular Maps

Let M be a closed, connected, orientable Riemannian manifold.

A map f: R" - M is K-quasiregular if f € Wli’c"(R"), fis
nonconstant and

[|Df||" < KJ¢

@ A homeomorphic K-quasiregular map is K-quasiconformal.

@ A l-quasiregular map in dimension 2 is holomorphic.

What manifolds admit quasiregular maps (quasiregularly elliptic)?
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A quasiregular map f: C — M can always be decomposed
f=gog

where ¢: C — C is quasiconformal and g: C — M is holomorphic
(Stoilow's theorem).

So in dimension 2 the question of quasiregular ellipticity reduces to
the holomorphic case.
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Higher Dimensions

Proposition (Bonk and Heinonen '01)

If there exists a 1-quasiregular map f: R” — M, then M is
conformally equivalent to a quotient of S” or T".

1-quasiregular is a restrictive condition in higher dimensions.

@ This is also true for 1-quasiconformal maps, which are locally
Mobius transformations for n > 3 (Liouville's theorem,
Liouville 1850, Gehring '62, Reshetnyak '67).

So instead study K-quasiregular maps for K > 1.
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Fundamental Group

In dimension 2, the fundamental group was the main obstruction
for admitting holomorphic maps.

Theorem (Varopoulos)

If M is an n-dimensional Riemannian manifold that is quasiregularly
elliptic, then w1(M) has a growth order bounded above by n.

@ Proof relies on lifting f to a noncompact universal covering
space.

@ As in dimension 2, this result is independent of the distortion
K.

@ Gromov ('81) asked whether there exists a simply connected
manifold that is not quasiregularly elliptic.
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K-Dependency

The situation is not identical for K =1 and K > 1.
Theorem (Rickman '80)

A K-quasiregular map f: R" — S" can omit at most
C(n, K)-points.

Theorem (Rickman '85, Drasin and Pankka '15)

For N € N, there exists a quasiregular map f: R" — S" that omits
N points.

@ In higher dimensions, the distortion constant can lead to
different results.
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K-Dependency

We can look for obstructions in other invariants besides the
fundamental group.

Theorem (Bonk and Heinonen '01)

If M is K-quasiregularly elliptic, then
dim H'(M) < C(n, I, K),

where H'(M) is the degree | de Rham cohomology of M.

They conjecture that C(n, /, K) = ('), which is attained since T"
is quasiregularly elliptic.
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Dynamic Result

Theorem (Kangasniemi '17)

If M admits a noninjective uniformly quasiregular map, then

dim H'(M) < <7>

@ A result by Martin, Volker and Peltonen ('06) gives that M is
quasiregularly elliptic.

@ Proof uses pointwise orthogonality properties of rescaled
differential forms on M.
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Main Result

What about the case when M is not assumed to admit a uniformly
quasiregular map?

Theorem (P. '18)

If M is quasiregularly elliptic, then

@ This bound is optimal because T" is quasiregularly elliptic.
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Main Result

Corollary (P. '18)

There exist simply connected manifolds that are not quasiregularly
elliptic.

o For example, M = #™(52 x S?) for m > 4.

Theorem (Rickman '06)
(52 x S2)#(S? x S?) is quasiregularly elliptic.
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Outline of the Proof

@ Using f, pull back Poincaré pairs on M.
@ Rescale the forms in R” to get a collection of differential
forms on B(0,1).
@ The rescaled forms are then pointwise orthogonal, which says
that the number of forms should be bounded above by
. I __(n
dim A'R" = (7).
e This uses a weak reverse Holder inequality for Jacobians of
quasiregular maps into manifolds with nontrivial cohomology.
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Rescaling Procedure |

In the proof of the Bonk and Heinonen result the authors use a
rescaling procedure on the map f: R” — M.

@ This gives that f is uniformly Holder continuous.

Instead of rescaling the map f, rescale the pullbacks of differential
forms.

o If a € Q/(M), let n = f*a. Let Bj = B(aj,rj) CR" be a
sequence of balls such that

A(BJ) ::/ Jf — 00.
B;
Define

S

AR

where Tj(x) = aj + rix, p=n/I.
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Rescaling Procedure I

1 *
WTJ (n)

Rescaling functions in the Rickman-Picard theorem context was
used in a paper by Eremenko and Lewis '91.

=

@ They rescale A-harmonic functions of the form log |f] to get
functions on B(0,1).

@ The new functions satisfy strong pointwise estimates.

Rescaling forms on M was used by Kangasniemi in the dynamical
counterpart of the theorem.

@ The rescaled forms satisfy pointwise orthogonality.
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Rescaling Procedure IlI

<
~ A(Bj) Jg

So n; is uniformly bounded in LP(B(0,1)) and has a convergent
subsequence in the weak topology.
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Example of Rescaling |

M = T? and f(z) = €.
HY(T?) = {adz + bdz : a,b € R}.

n="f"dz=e"dz

In the rescaling, need B; such that
) A(Bj) — 0
o A(B) < CA(AB))

where

A(B) = / Jr
B
B; = B(j,1) works. On B(0,1),

1 +z ej z
nj = Wé‘j dz ~ ge dz
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Example of Rescaling |l

In the limit,
Similarly, for 6§ = f*dz, i
9j — efdz
Let w on B(0,1) be a differential form such that
wAefdz=wNe*dz=0

Conclude that w =0 on B(0,1).
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Orthogonality

If k = dim H'(M), then let (a1, 81), ..., (ak, Bx) be Poincaré pairs

on M.
/ aa/\ﬁb :5ab
M

So, if n; = f*a, and 0, = f* ), then in the rescaling
fla A\ éb =0

a # b, for almost every x € B(0,1).
So Z, = {x € B(0,1) : ns(x) = 0} cover B(0,1).
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Equidistribution of f

Since f is quasiregular, it satisfies equidistribution properties as a
map into M.
Let o € Q/(M), B € Q™ (M),

1
fBj(¢ o Tj)Jr

/ aNp=1
M
and ¢ € C(B(0,1)).

/ wﬁaAéa~.lim/(¢oD)Jf
B(0,1) J70 JB;

lim
j—o0

/B@o 'I'j)f*(a/\ﬁ)—l’ —0

when
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Jr is Nonzero

By the orthogonality condition, the sets
Z, ={x € B(0,1) : na(x) = 0} cover B(0,1). So on B;,

/ Jr = CA(B)
T(2)

for one of the n,. But

5
- JfN/ Nai A Bai — 0.
A(Bj) J1.(z.) Tz

This gives a contradiction, which implies that dim H'(M) < (7).
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Reverse Holder Inequality |

In the argument above actually need to use a reverse Holder
inequality for Jr.

Theorem (Bojarski and Iwaniec '83)

Let f: R" — R" be a K-quasiregular map. Then f € W,i’cnq(]R”)
for 1 < q < Q(n, K), where Q(n, K) depends only on n and K. If
B c R" is a ball, then

1/q 1
q -
([B-jf> Sc(nvq7K)’B|1/q//BJf (1)

2

where % + % = 1. Crucially, C(n, q, K) is independent of f and B.

@ This theorem does not directly apply since f: R” — M. If
H'(M) =0 for 1 </ < n— 1, then the theorem does not
necessarily hold.
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Reverse Holder Inequality Il

In our case there is an / so that H/(M) # 0.

Proposition

Let M be a closed Riemannian manifold and let f: R” — M be
K-quasiregular. If there exists an integer [ with 1 </ < n — 1 such
that H/(M) # 0, then the Jacobian of f satisfies the weak reverse
Holder inequality,

1 / ( 1 / n/(n+1)>(n+1)/n
i J<Cn,M,K){ — [ J ,
18] /157 = <M1 [,

where B C R" is an arbitrary ball.

@ Once the proposition is shown, then the reverse Holder
inequality for an exponent b > 1 follows from Gehring's
lemma.
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Proof of the Proposition

Since H/(M) # 0, there exists as before a Poincaré pair, a and 3,

so that
/a/\ﬁzl.
M

/wa/f*a/\f*ﬁ
B B

And dao =0, soon B, f*a = du.
If » € C°(B), then

Through this,

/Bl/JdU/\ B

/ dpNuNf*p
B
< ||dv][oollulls]|£*B]]¢
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/B OF (o A B) < [|dW ol ullsll £ B

For a suitable 1,

1
dVY|co < —.

The Poincaré-Sobolev inequality for differential forms (lwaniec and
Lutoborski '93) gives

lulls < I als~

Iffal < CJY/" and |FF8| < CUTIn

Choosing exponents correctly gives the reverse Holder inequality
for Jf.
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Further questions

@ What about the case when M is not compact?

e Forn=2, M~C or S xR.
e For n > 2, the answer must depend on K by the
Rickman-Picard theorem.

@ Does there exist a quasiregularly elliptic manifold where the
quasiregular map does not factor through the torus?
o If #352 x S? is quasiregularly elliptic, then the map cannot
factor through the torus (Pankka and Souto '12).
e Suppose dim H/(M) = (7), what does this imply about M?

e For / =1, there must exist a covering map p: T" - M
(Luisto and Pankka '16).
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Thank you!
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