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configuration space: M manifold

state space: TM tangent bundle

dynamical variable: function on TM × R

Newtonian mechanics

mass tensor: mij

kinetic energy: T =
1
2
mijv

ivj

Riemannian metric on M ; vi velocity, vi mo-
mentum.

Take M to be Rn with a flat metric.

Newton’s law: Fi = mija
j

equations of motion:

ẋi = vi

v̇i = mijFj
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Lagrangian mechanics

Lagrangian: dynamical variable L = L(x, v, t)

path: X: R→M with velocity Ẋ

action: I =
∫ t1

t0

L(X, Ẋ, t) dt

Hamilton’s principle of least action: I sta-
tionary under variation of path

Euler-Lagrange equation:
∂L

∂xi
− d

dt

∂L

∂vi
= 0
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Basic mechanics

Basic = Newtonian ∩ Lagrangian

potential energy: V defined by L = T − V
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∂L

∂xi
= − ∂V

∂xi

− ∂V
∂xi

=
d

dt

(
mijv

j − ∂V

∂vi

)
d

dt
(mijv

i) = Fi

Fi = − ∂V
∂xi

+
d

dt

∂V

∂vi

But Fi is a dynamical variable, a function of

position and velocity, so
∂V

∂vi
must be independent

of the velocity. That is, the Lagrangian must be a

basic Lagrangian:

L =
1
2
mijv

ivj − ϕ+Aiv
i

scalar potential: ϕ

covector potential: Ai
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Hamilton’s principal function:

S(x, t) = −
∫ t1

t

L(
(
X(s, x, t), Ẋ(s, x, t), s

)
ds

A second form of the principle of least action
is that S be stationary when the flow is perturbed
by a time-dependent vector field.

Hamilton-Jacobi equation:

∂S

∂t
+

1
2

(∇iS −Ai)(∇iS −Ai) + ϕ = 0

For simplicity, we assume that the covector
potential A = 0, so that V = ϕ and

∂S

∂t
+

1
2
∇iS∇iS + V = 0
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Basic stochasticization

Let w be the Wiener process on M , the stochas-
tic process of mean 0 characterized by

dwidwi = h̄dt+ o(dt)

We postulate that the motion of the configuration
is a Markov process governed by the stochastic dif-
ferential equation

dXi = bi
(
X(t), t

)
dt+ dwi

where bi is the forward velocity.

Thus the fluctuations are of order dt
1
2 , and

with a value larger than h̄ this postulate could
be falsified by experiment, without violating the
Heisenberg uncertainty principle.
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Now try to substitute the Markov process X
into Hamilton’s principal function

S(x, t) = −
∫ t1

t

L(
(
X(s, x, t), Ẋ(s, x, t), s

)
ds

and require that the conditional expectation Et

given the configuration at time t of the action be
stationary with respect to variations of the forward
velocity b.

The trajectories of the process X are not dif-
ferentiable, so replace the derivatives in Ẋ by dif-
ference quotients, and replace the integral by a
Riemann sum. There is a singular term whose con-
ditional expectation is 0, so it drops out, and there
is a singular term that is a constant, independent
of the trajectory, so it drops out from the varia-
tion. Then pass to the limit when the Riemann
sum becomes an integral. The result is
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The stochastic principal function:

S(x, t) = −Ex,t

∫ t1

t

(
1
2
bibi +

h̄

2
∇ib

i − V
)(

X(s), s
)
ds

where Ex,t is the expectation conditioned by X(t) = x.

In addition to the forward velocity bi there are
the

backward velocity: bi∗

current velocity: vi =
bi + bi∗

2

osmotic velocity: ui =
bi − bi∗

2

The osmotic velocity depends only on the
time-dependent probability density ρ. Let

R =
h̄

2
log ρ

Then
ui =

1
h̄
∇iR
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Computation shows that

∂S

∂t
+

1
2
∇iS∇iS + V − 1

2
∇iR∇iR−

h̄

2
∆R = 0

∂R

∂t
+∇iR∇iS +

h̄

2
∆S = 0

The first equation is the stochastic Hamilton-Jacobi
equation. There is no deterministic analogue of the
second equation since R = 0 when h̄ = 0. These
two coupled nonlinear partial differential equations
determine the process X.

With
ψ = e(R+iS)

these equations are equivalent to the Schrödinger
equation

∂ψ

∂t
= − i

h̄

(
−1

2
∆ + V

)
ψ
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This derivation is that of Guerra and Morato
but using the classical Lagrangian. The result ex-
tends to the general case, when there is a covector
potential Ai and M is not necessarily flat.

As I reported to this conference two years ago,
there are problems with stochastic mechanics as a
candidate for a physically realistic theory. There
can be instantaneous signaling between widely sep-
arated correlated but dynamically uncoupled sys-
tems. Although the probability distribution of po-
sition measurements at a single time are the same
for quantum mechanics and stochastic mechan-
ics (because |ψ|2 = ρ is the probability density of
the configuration), measurements at two different
times, even when mutually compatible, can differ
in the two theories.

The problem is that stochastic mechanics de-
scribes a local Markov process in multidimensional
configuration space, not in physical space.
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Stochastic mechanics of fields

There are two motivations for applying stochas-
tic mechanics to fields. One is the hope that since
fields live on physical spacetime nonlocality prob-
lems may be avoided. The other is that it may
provide useful technical tools in constructive quan-
tum field theory.

The strategy is to apply basic stochasticization
to a basic field Lagrangian.

Consider a real scalar field ϕ on d-dimensional
spacetime. I shall discuss the free field of mass µ >
0 and the field with a ϕ4 interaction.
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Choose a spacelike hyperplane Rs, where s,
the number of space dimensions, is d − 1. The
configuration space is a set of scalar functions ϕ
on Rs.

Impose a spatial cutoff and a momentum cut-
off. That is, put the system in a box of side λ and
represent the free field as a set of harmonic oscil-
lators (a device going back to Jeans) with momen-
tum bounded by κ. Then we have a system with
finitely many degrees of freedom.

For the free field, of course, the limit

λ→∞, κ→∞

presents no difficulty. But it is unwise to attempt
to formulate an interacting field on the same space
since by Haag’s theorem it must have an inequiv-
alent representation of the canonical commutation
relations.
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Formally, the ϕ4 theory has the interaction
Hamiltonian ∫

Rs
ϕ4(x) dx

With our cutoffs, the integral becomes a sum. But
this expression is hopelessly singular as κ → ∞,
and the interaction Hamiltonian is replaced by∫

Rs
:ϕ4(x): dx

The colons denote Wick ordering, which can be
expressed simply by summing over quadruples of
distinct oscillators.
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For d = 2 it was shown that the Hamiltonian
is bounded below by a constant independent of κ,
giving the limit κ → ∞. This was the origin of hy-
percontractivity, which has grown into a rich topic
in analysis. The construction of the limit λ → ∞
followed—in fact, with ϕ4 replaced by any polyno-
mial of even degree.

For d = 3 the ϕ4 theory was rigorously estab-
lished by Glimm and Jaffe, with mass and coupling
constant renormalization, by heroic work with clus-
ter expansions.

For d > 4 Aizenman established a no-go the-
orem: the limiting theory with cutoffs removed is
non-interacting.

For d = 4 there are partial no-go results, and
most workers in constructive quantum field the-
ory believe that the limiting theory with cutoffs
removed is non-interacting also for d = 4, but there
is no complete proof—the problem is open.
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In this work in constructive quantum field the-
ory, Minkowski space was replaced by Euclidean
space, giving a problem in probability theory: the
Euclidean fields commute. Then the relativistic
theory was reconstructed from the Euclidean the-
ory.

This is a powerful analytic technique, but it
does not give a candidate for quantum theory as
emergent from an underlying classical theory. (But
I heard or read somewhere that Stephen Hawking
said something like “the world is Euclidean but ap-
pears relativistic.” I don’t have a reference for this
or know what he meant if he did say something
like this.)
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What does stochastic mechanics have to say?
We have a basic Lagrangian. But the separation of
the energy for the free field into kinetic energy and
potential energy is not a relativistically invariant
procedure. Probability theory and relativity do
not mix well, due to the indefinite nature of the
Minkowski metric.

For the ground state of the free field, the cor-
responding random field of stochastic mechanics
was constructed by Guerra and Ruggiero. It is a
Gaussian field with Euclidean-invariant covariance
function.
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But it plays a different role than in Euclidean
field theory; relativistic effects persist. Suppose
that the field is coupled to an external potential lo-
calized in a bounded spacetime region Ω, bounded
in the past by t1 and in the future by t2. Consider
the Markov process, not necessarily for the ground
state, of the free field at time t1. It interacts with
the external potential and has a certain value at t2.
By the basic theorem of stochastic mechanics, the
probability distribution of the process at time t2
is the same as that given by quantum mechanics.
Since the quantum field is relativistic, the influence
of the external potential affects only the points at
time t2 that lie in the future cone of some point
in Ω.
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But we cannot conclude a similar result for
the Markov process itself. Superluminal influences
persist, alas, and the hope that stochastic mechan-
ics applied to field theory gives a reasonable candi-
date for quantum field theory as emergent from a
classical theory does not seem to be valid. But it
would be interesting to develop it further and see
what it says about interacting fields.
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