
REVIEW OF STOCHASTIC MECHANICS

References

Dynamical Theories of Brownian Motion

http://math.princeton.edu/∼nelson/books/bmotion.pdf

Quantum Fluctuations

http://math.princeton.edu/∼nelson/books/qf.pdf

together with references in the second book to the work of many
people.
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Classical mechanics

Rdn configuration space of n particles in d space dimen-
sions

mk mass of kth particle

mij = mk if (k − 1)d < i = j ≤ kd, 0 if i 6= j Riemann
metric

T =
1
2
mij ẋ

iẋj kinetic energy

(tensor notation with summation convention)

L = T − V Lagrangian

Fi = − ∂V
∂xi

+
d

dt

∂V

∂vi
force
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(x, v) state (position and velocity)

dynamical variable: function of (x, v)

V = ϕ−Aiẋ
i ϕ scalar potential, A covector potential

S = −
∫
L Hamilton’s principal function

From a variational principle, the Hamilton-Jacobi equation:

∂S

∂t
+

1
2
(
∇iS −Ai

)
(∇iS −Ai) + ϕ = 0

Fi = mij ẍ j Newton equation
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Stochastic mechanics — kinematics

A stochastic process is a Markov process in case past and
future are conditionally independent given the present.

The theory is time symmetric.

In stochastic mechanics, the trajectory x(t) is a Markov
process:

dx(t) = dw(t) + b
(
x(t), t

)
dt

where b is the mean forward velocity.
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w is a Wiener process (Brownian motion) with

Et dx
i(t)dxj(t) = h̄mijdt

where Et is expectation with respect to the present at t.

This is just on the borderline of being falsifiable:

We can measure position at two times t1 and t2 with an
error given by the uncertainty principle.

With a constant bigger than h̄ in the diffusion tensor we
could determine that particles do not move in the way pre-
dicted.
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Since we have time symmetry, there is also

b∗(x, t) mean backward velocity

v =
b+ b∗

2
current velocity

u =
b− b∗

2
osmotic velocity

ρ(x, t) probability density

ui =
1
2
∇iρ

ρ
osmotic equation

∂ρ

∂t
= −∇i(viρ) current equation

6



Stochastic mechanics — dynamics

Classical dynamics comes from a variational principle ap-
plied to action integrals.

The trajectories of our Markov processes are nowhere dif-
ferentiable.

How can we formulate the action?∫
ϕ
(
x(t), t

)
dt−

∫
Aj

(
x(t), t

)
dxj(t) OK

(ordinary Riemann integral and Fisk-Stratonovich time-symmetric
stochastic integral)

The kinetic action is more subtle — work of Francesco
Guerra and Laura Morato.
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dxi

dt
is a difference quotient with dt > 0 (not a derivative).

Calculate

Et
1
2
dxi

dt

dxi

dt

to o(1). Let

W k =
∫ t+dt

t

[wk(r)− wk(t)]dr

We find

dxidxi = bibidt
2 + 2bidwidt+ 2∇kb

iW kdwi + o(dt2)
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First miracle: The term 2bidwidt is singular, of order dt
3
2 , but

Et 2bidwidt = 0

Use the fact that w has orthogonal increments and calculate
further. We find

Et
1
2
dxi

dt

dxi

dt
=

1
2
bibi +

1
2
∇ib

i +
nd

2dt
+ o(1)

Second miracle: The singular term
nd

2dt
is a constant, inde-

pendent of the trajectory, so it drops out in the variational
principle.
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Let R =
h̄

2
log ρ, so ∇iR is the osmotic velocity ui.

Apply the variational principle to the expected action. We find
the stochastic Hamilton-Jacobi equation:

(1)
∂S

∂t
+

1
2

(∇iS−Ai)(∇iS−Ai)+ϕ− 1
2
∇iR∇iR−

h̄

2
∇i∇iR = 0

Write the current equation in terms of R and S:

(2)
∂R

dt
+∇iR(∇iS −Ai) +

h̄

2
∇i∇iS −

h̄

2
∇iA

i = 0

(1) and (2) are a system of coupled nonlinear partial dif-
ferential equations.
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Let ψ = e
1
h̄ (R+iS)

Third miracle: (1) and (2) are equivalent to the Schrödinger
equation

ih̄
∂ψ

∂t
=
[

1
2

(
h̄

i
∇j −Aj

)(
h̄

i
∇j −Aj

)
+ ϕ

]
ψ
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mij on Rdn is a flat Riemannian metric. We can apply
the same procedure to any Riemannian manifold. We find the
Schrödinger equation with an additional term

h̄2

12
R̄ where R̄ is the scalar curvature.

This is the Bryce DeWitt term.
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The mean forward derivative DF (t) of a stochastic process F
is defined by

DF (t) = lim
dt→0+

Et
F (t+ dt)− F (t)

dt

and the mean backward derivative is

D∗F (t) = lim
dt→0+

Et
F (t)− F (t− dt)

dt

The mean acceleration is

a =
1
2

(DD∗x+ D∗Dx)

We have the stochastic Newton equation

Fi = mija
j
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Successes of stochastic mechanics

• classical derivation of the Schrödinger equation — Fran-
cesco Guerra and Laura Morato

• the probability density ρ of the Markov process agrees
with |ψ|2 at all times

• stochastic explanation of the relation between momen-
tum and the Fourier transform of the wave function — David
Shucker, Eric Carlen

• existence of the Markov process under the physically
natural assumption of finite action — Eric Carlen; this is the
most technically demanding work in the entire subject
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• a stochastic explanation of why identical particles satisfy
either Bose-Einstein or Fermi-Dirac statistics if d ≥ 3, with
parastatistics possible if d = 2

• a stochastic explanation of spin and why it is integral or
half-integral — Thaddeus Dankel, Daniela Dohrn and Francesco
Guerra

• if the force is time-independent, conservation of the ex-

pected stochastic energy Et

(
1
2
uiui +

1
2
vivi + ϕ

)
• a stochastic picture of the two slit experiment, explaining

how particles have trajectories going through just one slit but
produce a probability density as for interfering waves
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Failures of stochastic mechanics

• extreme non-locality: with two dynamically uncoupled
particles, a force applied to one can immediately affect the
other, in a way independent of their spatial separation

see §23 of Quantum Fluctuations
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• wrong predictions for measurements at different times:
with two dynamically uncoupled particles, measurements of
their positions at two different times disagree with quantum
mechanics

see the Afterword (Chapter Ten) of “Diffusion, Quantum
Theory, and Radically Elementary Mathematics”, ed. William
G. Faris, Mathematical Notes # 47, Princeton University Press
(2006)

17



Puzzle: How can a theory be so right and yet so wrong? Is
stochastic mechanics an approximation to a correct theory? If
so, what?
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Open questions

The spin-statistics theorem is a result of relativistic quan-
tum field theory. Can stochastic mechanics give an explanation
in terms of nonrelativistic particle mechanics?

The solution of the Schrödinger equation is computation-
ally difficult. Is there a way in stochastic mechanics to study
the motion of an ensemble of configurations only along the
most probable trajectories, thus giving a stochastic method for
solving the Schrödinger equation? This seems unlikely, but a
positive solution would be of major computational importance.
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These notes are posted at

http://www.math.princeton.edu/∼nelson/papers/sm.pdf
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