Please show all work. Books, notes, computers, calculators, cell phones, etc. are not permitted in this exam.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Your name (print)

Write below and sign the Pledge: I pledge my honor that I have not violated the Honor Code during this examination.
1. (10 points total)

(a) Compute the gradient of the function

\[f(x, y, z) = \ln(zx + \sin y) + ze^{xyz} \]

(b) Find an equation of the form \(ax + by + cz = d \) for the tangent plane to the level surface of \(f \) through \((1, 0, 1)\).

(c) Compute the directional derivative in direction \((-1, 2, 3)\) of \(f \) at \((1, 0, 1)\).

Solution:

(a) \[
\nabla f(x, y, z) = \begin{pmatrix}
\frac{z}{zx+\sin y} + yz^2e^{xyz} \\
\frac{\cos y}{zx+\sin y} + xz^2e^{xyz} \\
\frac{x}{zx+\sin y} + (1 + xyz)e^{xyz}
\end{pmatrix}
\]

(b) \[
\nabla f(1, 0, 1) = \begin{pmatrix}
1 \\
2 \\
2
\end{pmatrix}
\]

so the tangent plane is the set of \((x, y, z)\) such that

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} - \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix} \cdot \begin{pmatrix}
1 \\
2 \\
2
\end{pmatrix} = 0
\]

or:

\[x + 2y + 2z = 3\]

(c) \[
D_{(-1,2,3)} f(1,0,1) = (1 2 2) \begin{pmatrix}
-1 \\
2 \\
3
\end{pmatrix} = 9
\]
2. (10 points total)

(a) Express the function

\[f(x, y, z) = \left(\begin{array}{c}
(xy \cos z) \ln(1 + xy \cos z) + e^{x+y^2+z-1} \\
(xy \cos z) \ln(x + y^2 + z) + e^{xy \cos z}
\end{array} \right) \]

as a composition and use the chain rule to compute the total derivative \(Df \) at \((2, 0, -1)\).

(b) Let \(h(t) = g(t^2, t^3) \), where \(g \) is an unknown function. Write an expression for \(\frac{dh}{dt} h(t) \) in terms of the partial derivatives of \(g \).

Solution:

(a) Write \(f(x, y, z) = g(h(x, y, z)) \) where

\[g(u, v) = \left(\begin{array}{c}
u \ln(1 + u) + e^{v-1} \\
u \ln v + e^u
\end{array} \right)\]

and

\[h(x, y, z) = \left(\begin{array}{c}u(x, y, z) \\
v(x, y, z)
\end{array} \right) = \left(\begin{array}{c}xy \cos z \\
x + y^2 + z
\end{array} \right)\]

So

\[Dg(u, v) = \left(\begin{array}{c}
\ln(1 + u) + \frac{u}{1+u} e^{v-1} \\
\ln v + e^u \frac{u}{v}
\end{array} \right)\]

and

\[Dh(x, y, z) = \left(\begin{array}{ccc}
y \cos z & x \cos z & -xy \sin z \\
1 & 2y & 1
\end{array} \right)\]

So

\[h(2, 0, -1) = \left(\begin{array}{c}0 \\
1
\end{array} \right)\]

and

\[Dh(2, 0, -1) = \left(\begin{array}{ccc}0 & 2 \cos(-1) & 0 \\
1 & 0 & 1
\end{array} \right)\]

and

\[Dg(0, 1) = \left(\begin{array}{c}0 \\
1
\end{array} \right)\]

so

\[Df(2, 0, -1) = Dg(h(2, 0, -1))) Dh(2, 0, -1) = \left(\begin{array}{c}0 \\
1
\end{array} \right) \left(\begin{array}{c}0 & 2 \cos(-1) & 0 \\
1 & 0 & 1
\end{array} \right) = \left(\begin{array}{c}1 \\
0 & 2 \cos(-1) & 0
\end{array} \right)\]

(b) Since \(h \) is the composition of the function \(g \) and \(t \mapsto (t^2, t^3) \) we have

\[\frac{dh}{dt} h(t) = \left(\frac{\partial}{\partial x} g(t^2, t^3) \right) \left(\frac{\partial}{\partial y} g(t^2, t^3) \right) \left(\begin{array}{c} 2t \\
3t^2
\end{array} \right) = 2t \cdot \frac{\partial}{\partial x} g(t^2, t^3) + 3t^2 \cdot \frac{\partial}{\partial y} g(t^2, t^3) \]
3. (20 points total)
Consider the system of equations
\[
\begin{align*}
xy + zy^2 + xz^2 &= 1 \\
x - 2xyz - z^3 &= 2
\end{align*}
\]
and the solution \(p = (1, -1, 1) \).
(a) Show that the solutions \((x, y, z)\) of the system can be expresses near \(p \) as \((x, y(x), z(x))\).
(b) Compute \(y', z' \) at the points corresponding to the solution \(p \).
(c) Estimate a solution \(q \) to the equations whose first coordinate is 0.9.
Solution:
(a) Consider the function
\[
F(x, y, z) = \left(\begin{array}{c} xy + zy^2 + xz^2 \\ x - 2xyz - z^3 \end{array} \right)
\]
Then
\[
DF(x, y, z) = \left(\begin{array}{ccc} y + z^2 & x + 2yz & y^2 + 2xz \\ 1 - 2yz & -2xz & -3z^2 - 2xy \end{array} \right)
\]
so
\[
DF(1, -1, 1) = \left(\begin{array}{ccc} 0 & -1 & 3 \\ 3 & -2 & -1 \end{array} \right)
\]
In order to express \(y, z \) in terms of \(x \) the implicit function theorem tells us that the matrix whose columns are the columns of \(DF(1, -1, 1) \) corresponding to \(y, z \) must have full rank. In this case this is the matrix
\[
A = \left(\begin{array}{cc} -1 & 3 \\ -2 & -1 \end{array} \right)
\]
which is indeed non-singular because \(\det A = -3 + 6 = 3 \neq 0 \).
(b) By the implicit function theorem,
\[
A \left(\begin{array}{c} y'(1) \\ z'(1) \end{array} \right) = - \left(\begin{array}{c} 0 \\ 3 \end{array} \right)
\]
so
\[
\left(\begin{array}{c} y'(1) \\ z'(1) \end{array} \right) = -A^{-1} \left(\begin{array}{c} 0 \\ 3 \end{array} \right) = - \left(\begin{array}{cc} -1/7 & -3/7 \\ 2/7 & -1/7 \end{array} \right) \left(\begin{array}{c} 0 \\ 3 \end{array} \right) = \left(\begin{array}{c} 9/7 \\ -3/70 \end{array} \right)
\]
(c)
\[
q \approx \left(\begin{array}{c} 0.9 \\ -1 + (-0.1)y'(-1) \\ 1 + (-0.1)z'(1) \end{array} \right) = \left(\begin{array}{c} 0.9 \\ -1 - 9/70 \\ 1 - 3/70 \end{array} \right) = \left(\begin{array}{c} 0.9 \\ -79/70 \\ 67/70 \end{array} \right)
\]
4. (20 points total)

(a) Find the critical points of the function

\[f(x, y, z) = x^3 - 4x^2 - 2y^2 - z^2 - 2xy - 2yz \]

(b) Classify the critical points as local minimum, local maximum, saddle point or "can’t tell".

(c) Which, if any, of the points you found in (b) is a global extremum?

Solution:

(a) The derivative is

\[\nabla f(x, y, z) = \begin{pmatrix} 3x^2 - 8x - 2y \\ -4y - 2x - 2z \\ -2z - 2y \end{pmatrix} \]

so \(\nabla f = 0 \) if and only if either

\[
\begin{align*}
x &= -y \\
z &= -y \\
3x^2 - 6x &= 0
\end{align*}
\]

and \(x = 2, y = -2, z = 2 \), or else \(x = y = z = 0 \).

(b) The Hessian is

\[
\begin{pmatrix}
6x - 8 & -2 & 0 \\
-2 & -4 & -2 \\
0 & -2 & -2
\end{pmatrix}
\]

When \(x = 0 \) this matrix is

\[
\begin{pmatrix}
-8 & -2 & 0 \\
-2 & -4 & -2 \\
0 & -2 & -2
\end{pmatrix}
\]

and is negative semi-definite, so \((0, 0, 0) \) is a local max. For \(x = 2 \), it is

\[
\begin{pmatrix}
4 & -2 & 0 \\
-2 & -4 & -2 \\
0 & -2 & -2
\end{pmatrix}
\]

which is indefinite, so \((2, -2, 2) \) is a saddle.

(b) The function has no global max and min.
5. (20 points total)

Maximize \(x^2 + y \) subject to \(xy \geq 1 \) and \(2x + 2y \leq 5 \) (you may assume that local maxima are global).

Solution: The constraints are \(g_1(x, y) = -xy \leq -1 \) and \(g_2(x, y) = 2x + 2y \leq 5 \).

First check degenerate points: the matrix of gradients is

\[
\begin{pmatrix}
-y & -x \\
2 & 2
\end{pmatrix}
\]

The second row is non-zero so when only the 2nd eq. is binding there is no degeneracy. When only the 1st is binding, that is \(xy = 1 \), the first row of the matrix cannot be zero, so there is no degeneracy. Finally, when both are binding we combine \(xy = 1 \) and \(2x + 2y = 5 \) to find that \(x(\frac{1}{2}(5 - x)) = 1 \), or: \(x^2 - 5x + 2 = 0 \). There are two solutions but one can check that for each solution \(x, y = \frac{1}{2}(x - 5) \neq x \) and so the rank of the matrix of gradients is 2. Hence there are no degeneracies.

Next we solve the lagrange equations

\[
\begin{align*}
2x + \lambda y - 2\mu &= 0 \\
1 + \lambda x - 2\mu &= 0 \\
\lambda(xy - 1) &= 0 \\
\mu(2x + 2y - 5) &= 0 \\
\lambda &\geq 0 \\
\mu &\geq 0 \\
xy &\geq 1 \\
2x + 2y &\leq 5
\end{align*}
\]

If \(\lambda = 0 \) and \(\mu = 0 \) then (2) is violated.

If \(\lambda = 0 \) and \(\mu \neq 0 \) then from (1),(2) we have \(x = 1/2 \) and from (4), \(y = 2 \). Then \(\mu = 1/2 \) by (1) so this is a candidate.

If \(\mu = 0 \) and \(\lambda \neq 0 \) then from (3) \(x, y \neq 0 \). By (2) \(\lambda = -1/x \) so by (1) \(2x^2 - y = 0 \), By (3), \(2x^3 - 1 = 0 \) or: \(x = 1/\sqrt[3]{2} \). Then \(\lambda < 0 \), which contradicts (5)

Finally, if \(\lambda, \mu \neq 0 \) we have the system

\[
\begin{align*}
xy &= 1 \\
2x + 2y &= 5
\end{align*}
\]

which has two solutions, \((\frac{1}{2}, 2)\) and \((2, \frac{1}{2})\). The second of these gives a larger value of \(x^2 + y \) so this is the max.
6. (20 points total)

Find the maximum of xy subject to $x^2 + y^2 = 1$, $x - y \leq 0$ and $x \geq -1/2$.

Solution: We check for degenerate points. The gradient matrix of the constraints is

\[
\begin{pmatrix}
2x & 2y \\
1 & -1 \\
0 & -1
\end{pmatrix}
\]

which has full rank already. Since the last two rows are non-zero and LI of each other, we need to check the combinations of rows 1 alone, 1 and 2, 1 and 3, and all three rows.

The first row alone is LD only if $x = y = 0$ which violates the first constraint.

Row 1 and 2 are LD if and only if either $x = -y$. This leads to a degenerate point if the first two constraints are satisfied equalities. But if $x - y = 0$ then $x = y$. Since also $x = -y$ we find $x = y = 0$ which violates $x^2 + y^2 = 1$.

Row 1 and 3: these are LD if and only if $x = 0$. If this is true and the 1st and 3rd constraints are binding, but then the 3rd says $x = -1/2$ which is a contradiction.

All 3: if all 3 constraints are binding we find $x = -1/2$, $y = x = -1/2$, and so $x^2 + y^2 = 1$ is violated.

In summary, there are no degenerate points.

Next we solve

\[
\begin{align*}
y - 2\lambda x - \mu_1 + \mu_2 &= 0 \\
x - 2\lambda y + \mu_1 &= 0 \\
\mu_1(x - y) &= 0 \\
\mu_2(x + 1/2) &= 0 \\
\mu_1 &\geq 0 \\
\mu_2 &\geq 0 \\
x - y &\leq 0 \\
x &\geq -\frac{1}{2} \\
x^2 + y^2 &= 1
\end{align*}
\]

If $\mu_1 = 0$ and $\mu_2 = 0$, we have the system

\[
\begin{align*}
y - 2\lambda x &= 0 \\
x - 2\lambda y &= 0 \\
x^2 + y^2 &= 1
\end{align*}
\]

Clearly $x, y, \lambda \neq 0$. Dividing the first two eq. gives $x/y = y/x$ or $x^2 = y^2$ so $x^2 = y^2 =$
1/2 and $x, y = \pm \frac{1}{\sqrt{2}}$ indep. signs. Of these solutions, only $(1/\sqrt{2}, 1/\sqrt{2})$ satisfies the inequality constraints.

If $\mu_1 \neq 0, \mu_2 = 0$ then $x = y$, and we get the same solution again.

If $\mu_2 \neq 0, \mu_1 = 0$ then $x = -1/2$ so $y = \pm \sqrt{3}/2$. The $-$ case does not satisfy $x - y \leq 0$. The $+$ case does, and we get the point $(-1/2, \sqrt{3}/2)$.

If $\mu_1, \mu_2 \neq 0$ we have $x = 1/2$ and $y = 1/2$ which does not satisfy $x^2 + y^2 = 1$.

Evaluating xy at the points we found, we find that the maximum is attained at $(1/\sqrt{2}, 1/\sqrt{2})$.