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Abstract

We discuss numerical schemes for various forms of the Landau-Lifshitz equation. A

new simple projection method is introduced and is shown to be unconditionally stable.

The advantage over other schemes are also demonstrated numerically.

1 Introduction

The Landau-Lifshitz equation which describes the evolution of magnetization n continnum

ferromagnets plays an important role in the understanding of nonequilibrium magnetism. In

this paper, we will discuss various numerical methods for the Landau-Lifshitz equation in

the form:

mt = m��m� m� (m��m) (1.1)

where m : 
 � R
d ! S

2, d=1,2,3,  is a damping parameter. The boundary condition is

taken to be
@m

@n
= 0 (1.2)

on � = @
. (1.1) is the result of the Landau-Lifshitz equation

mt = m� h� m� (m� h) (1.3)

after neglecting lower order terms [7] [8]. In (1.3), h = � ÆF

Æm
where the free energy F is given

by

F (m) =

Z


f1
2
jrmj2 + �(m) +m � rugd3x (1.4)

Here � is a function of m, and u solves

r �
�
ru+m�


�
= 0 (1.5)
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on R3, with �
 being the indicator function of 
.

Although the nonlocal term in (1.4) also presents very important computational issues,

in this paper, we will concentrate on the questions raised by the leading order term in

(1.4), thereby neglecting the last two terms at the right hand side of (1.4). In this case

h = �m and (1.3) reduces to (1.1). The three terms in (1.4) are the exchange, anisotropy

and magnetostatic energies respectively. A term of the form
R

m � Hd

3
x should be added

to the right hand side of (1.4) if there is an external �eld H. It is easy to see that (1.3) can

also be written as

mt + m�mt = (1 + 
2)m� h (1.6)

or

mt �m�mt = �(1 + 
2)m� (m� h) (1.7)

(1.6) is sometimes referred to as the Gilbert equation.

The following identities will be useful later:

�m� (m� h) = h� (m; h)m (1.8)

�m� (m��m) = �m + jrmj2m (1.9)

where we have used the fact that (m;m) = 1.

Two special cases of (1.1) are of particular interest. They correspond to  = 0 and

 = +1.

mt = m��m (1.10)

mt = �m� (m��m) (1.11)

or

mt = �m + jrmj2m (1.12)

(1.11) is the equation describing the heat ow of harmonic maps to S
2 [12]. It has been

studied extensively in the geometry and geometric analysis literature. In contrast, (1.10)

describes the Hamiltonian (or symplectic) ow of harmonic maps to S
2. At this point,

there is much less literature on (1.10). Although the two models (1.11) and (1.12) are

mathematically equivalent [4], (1.11) gives much better numerically stable solutions than

that of (1.12), as we show in section 2.

Even though it is generally expected, and for special situations of (1.11) rigorously proved

[1], that the solutions of (1.1), (1.10), (1.11) develop �nite time singularities, we will restrict

our attention to smooth solutions of these equations, leaving the discussions on singular

solutions to future publications.

In this paper, various numerical schemes will be discussed. In particular, a simple pro-

jection scheme is proposed to solve (1.11) which is implicit and unconditionally stable. Time

step size is an important issue for the numerical solution of the Landau-Lifshitz since the

fastest time scale in the application of (1.3) is on the order of picoseconds. This means that

straightforward explicit time stepping procedures will su�er from very severe constraints on

the size of the time step. On the other hand, implicit schemes will have to deal with the
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severe nonlinearity present in the equation in the form of the Lagrange multiplier for the

constraint that the length of m is 1. Here we propose time stepping method in the form of

a projection method that circument both problems.

The paper is organized as following. In section 2, we explain the di�erences between the

performance of numerical schemes for equations (1.11) and (1.12). Convergence of the spatial

discretizations is also proved. In section 3, an implicit projection scheme is proposed and its

unconditional stability is proved. Numerical examples are give in section 4 to demonstrate

that the performance of the projection scheme is better than most of the other numerical

schemes.

2 Spatial discretizations

Most discussions in this section will be in the setting of semi-discrete schemes, i.e. time

will be kept continuous. For simplicity of presentation, we will assume that we are working

with a uniform grid 
h with size h. The numerical results we present in this section are

computed with suÆciently small �t that the numerical error from time discretization is

basically negligible.

On a regular �nite di�erence grid, there are two obvious ways to discretize (1.1). The

�rst is
dmh

dt
= mh ��hmh � mh � (mh ��hmh) (2.1)

The second is
dmh

dt
= mj ��hmh + (�hmh + jrmhj2mh) (2.2)

Here �h and rh are the standard discretization of � and r respectively using centered

di�erences. Other di�erence approximations can be used. But it suÆces to discuss this

simplest case.

Both (2.1) and (2.2) provide convergent and second order accurate approximations for

smooth solutions of (1.1). This is relatively easy to establish for (2.1).

Theorem 1: Let m(x; t) 2 L
1([0; T ]; H3) be a smooth solution of (1.1) with initial data

m(x; 0) = m0(x)

and let mh be the solution of (2.1) with the same initial data on a uniform grid 
h. Then

we have

max
x2
h

jm(x; t)�mh(x; t)j � c(t)h2 (2.3)

where c(t) depends only on m.

The proof of this result will be given at the end of this section.

Even though both (2.1) and (2.2) give second order approximations to (1.11), their actual

performance is very di�erent. Note that (2.1) preserves the normalization exactly:

d

dt
(mh; mh) = 0
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and (2.2) does not. Let us examine the numerical solutions for the heat ow of harmonic

maps, by comparing the results of the following two schemes:

dmh

dt
= �mh � (mh ��hmh) (2.4)

or
dmh

dt
= �hmh + jrhmhj2mh (2.5)

In Figures 1 and 2, we plot the time history of the error computed by these two methods,

for the exact solution

me(x; t) = (sin x cos t; sinx sin t; cos x) (2.6)

on [0; �] with Dirichlet boundary condition. For (2.6) to be an exact solution of (1.11), a

forcing term f = @me

@t
+me�(me� @2me

@x2
) has to be added to the right hand side of (1.11). We

can see that while the error for (2.4) remains small, the error for (2.5) grows exponentially

fast with time.

The origin of the exponential growth of the error for (2.5) can be understood from the

following argument.

Consider the equation

mt = �m + jrmj2m (2.7)

Let e = (m;m)� 1. It is easy to see that e satis�es

et = �e + 2jrmj2e (2.8)

This shows that if e is not identically zero, then e grows exponentially fast. Since the

solutions of (2.5) does not preserve the normalization exactly, We expect (mh; mh) � 1 to

grow exponentially fast. This means that the error jm�mhj will exhibit exponential growth.
A simple �x of this problem is to consider instead the following equivalent form of (2.7)

mt = (m;m)�m + jrmj2m (2.9)

and replace (2.5) by
dmh

dt
= (mh; mh)�hm + jrhmj2mh (2.10)

For (2.9), (2.8) changes to

et = (m;m)�e (2.11)

The term that was responsible for the exponential growth of e in (2.8) is now eliminated.

In Figure 3, we plot the error for the same exact solution as in (2.6) with (2.5) replaced

by (2.10). We can see that the exponential growth of the error is now replaced by linear

growth.

Proof of Theorem 1:
@m

@t
= m��m� m� (m��m)

4



dmj

dt
= mj ��hmj � mj � (mj ��hmj)

Let ~mj(t) = m(xj; t). We have

d ~mj

dt
= ~mj ��h ~mj �  ~mj � ( ~mj ��h ~mj) +O(h2)

Denote ej = mj � ~mj, then

dej

dt
= mj ��hej + ej ��h ~mj

� [mj � (mj ��hej) +mj � (ej ��h ~mj)

+ ej � ( ~mj ��h ~mj)] +O(h2) (2.12)

and

X
j

(
dej

dt
;�hej) =

X
j

�
ej ��h ~mj;�hej

�

+ 
X
j

jmj ��hejj2 � 
X
j

�
mj � (ej ��h ~mj);�hej

�

� 
X
j

�
ej � ( ~mj ��h ~mj);�hej

�
+
X
j

�
O(h2);�hej

�

= I1 + I2 + I3 + I4

and

1

2

d

dt

X
j

(rhej;rhej)h
d + 

X
j

jmj ��hejj2hd = �
X
j

�
ej ��h ~mj;�hej

�
h
d

+ 
X
j

�
mj � (ej ��h ~mj);�hej

�
h
d

+ 
X
j

�
ej � ( ~mj ��h ~mj);�hej

�
h
d �

X
j

�
O(h2);�hej

�
h
d

= I1 + I2 + I3 + I4

1

2

d

dt

X
j

(rhej;rhej)h
d � jI1j+ jI2j+ jI3j+ jI4j (2.13)

Let us assume for the time being that there exists a T � < T , s.t.

max
j
jrhmjj � 2C0 (2.14)

for 0 � t � T
�, where C0 is chosen so that

C0 > max
0�t�T

jrmj:
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Then

jI1j � jmj3;1
X
j

jrhejj2hd

jI2j � C0jmj3;1
X
j

jrhejj2hd

jI3j � C0jmj3;1
X
j

jrhejj2hd

where d � 3 is the dimension. Notice that the O(h2) term is smooth. Summation by parts

in I4 leads to

jI4j �
X
j

O(h2)jrhejjhd � O(h4) +
X
j

jrhejj2hd

(2.13) implies that

h
d
X
j

jrhejj2 � Ch
2 (2.15)

where C depends on C0 and m only.

The assumption (2.14) can be dealt with using Strang's trick. Namely, we construct a

correction to the exact solution in the form

�m(x; t) = m(x; t) + h
2
m1(x; t)

such that �m satis�es the di�erence equation with higher order accuracy:

d �mj

dt
= �mj ��h �mj �  �mj � ( �mj ��h �mj) +O(h4)

where �mj(t) = �m(xj; t). For this purpose, it is necessary and suÆcient that m1 satisfy

m1t =
1

12
m�D

4
m+m��m1 +m1 ��m

+ 

h 1
12
m� (m�D

4
m) +m� (m��m1)

i
: (2.16)

where

D
4 =

X
i

@
4
xi

The initial condition is m1(x; 0) = 0 and boundary condition is @m1

@n
j� = 0. Equation (2.16)

is a second order linear parabolic system in m1. The existence and uniqueness follows from

the general theory in [5].

We have, for h small enough

max
j
jr �mj(t)j � C0 (2.17)
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for 0 � t � T . From continuity, there exist Æ small enough, such that

max
j
jrhmj(t)j � 2C0 (2.18)

for 0 � t � Æ. This means that T � > Æ.

Now proceed as in (2.12)-(2.15), we get

h
d
X
j

jrh( �m�mj)j2 � Ch
4

for 0 � t � Æ for some C depending on C0 and �m only. Therefore

jr( �mj �mj)j2 � Ch
4�d � Ch

jrmjj2 � 2(jr �mjj2 + Ch) � 3C2
0

when h is small enough. This shows that the condition (2.18) will never be violated and T
�

can be any preset positive value T if h is small enough, depending only on T . This completes

the proof.

3 Temporal discretization

Again we will look �rst at the equation for the heat ow of harmonic map, (1.12), and then

extend our results to the Landau-Lifshitz equation (1.1).

The main purpose of this section is to construct time discretization procedures that have

good stability property. Since we are mainly concerned with temporal discretizations, we

will keep the spatial variables continuous.

3.1 Projection method for the heat ow of harmonic maps

The main idea is to rewrite (1.11) as

mt = �m+ �m (3.1)

and view � = jrmj2, or � = �(m;�m) as the Lagrange multiplier for the pointwise con-

straint (m;m) = 1.

Projection method is a fractional step procedure in which an intermediate magnetization

�eld, calledm�, is �rst computed by disregarding the constraint and the Lagrange multiplier.

The intermediate �eld m
� is then projected to S

2 to obtain the numerical solution at the

next time step. The simplest example of such a projection method is the following algorithm:

Knowing fmng, fmn+1g is computed by:

Step 1: Solve
m
� �m

n

�t
= �m� (3.2)
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with the boundary condition
@m

�

@n
j� = 0 (3.3)

Step 2:

m
n+1 =

m
�

jm�j (3.4)

The simplicity of such a scheme is obvious.

Direct calculation of local truncation error shows that the scheme is of �rst order accuracy.

More generally, consider the equation

mt = h� (m; h)m = �m� (m� h) (3.5)

The analog of the projection method (3.2)-(3.4) for this equation is

m
� �m

n

�t
= h(tn+1) (3.6)

m
n+1 =

m
�

jm�j (3.7)

It is easy to check that this method is �rst order accurate.

To verify the �rst order convergence of the projection method, we again use the exact

solution (2.6) for (1.11) with a forcing term. The following table gives emax

�t
where emax is

the maximum error.

emax=�t

T �t=0.01 �t=0.005 �t=0.0025

0.2000 0.1100 0.0878 0.0679

0.4000 0.1172 0.0907 0.0684

0.6000 0.1197 0.0915 0.0684

0.8000 0.1207 0.0918 0.0684

1.0000 0.1211 0.0919 0.0684

For this particular example, the scheme provides an accuracy slightly higher than �rst

order.

Next, we prove that (3.2)-(3.4) is unconditionally stable and convergent with �rst order

accuracy.

Theorem 2: Let m(x; t) 2 L
1([0; T ]; H3) be a smooth solution of (1.12) with initial data

m(x; 0) = m0(x). Let m�t be the numerical solution of (3.2)-(3.4) with the same initial data.

Then we have

max
x2


jm(x; tn)�m�t(x; t
n)j � C(tn)�t (3.8)

where tn = n�t; n = 1; 2; 3; ::: and C(t) depends only on m.

Proof: We begin by rewriting (3.2)-(3.4) as
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m
n+1 =

(I ��t�)�1mn

j(I ��t�)�1mnj (3.9)

It is understood in (3.9) that the Neumann boundary condition is imposed when inverting

I ��t�. Standard local truncation error analysis gives

m(x; tn+1) =
(I ��t�)�1m(x; tn)

j(I ��t�)�1m(x; tn)j +O(�t2) (3.10)

if m sati�es (1.12).

In order to deal with the nonlinear recursion relation that arises in the analysis of the

error, we will need an adaptation of Strang's trick [11] by constructing a correction of the

exact solution of (1.12) which satis�es (3.10) to higher order accuracy. To do this, let

~m(x; t) = m(x; t) + �tm1(x; t) + �t2m2(x; t) (3.11)

We will choose m1 and m2 such that

~m(x; tn+1) =
(I ��t�)�1 ~m(x; tn)

j(I ��t�)�1 ~m(x; tn)j +O(�t3) (3.12)

This is a tedious, but straightforward calculation. The key steps of this calculation are

summarized below.

j(I ��t�)�1 ~mj2 = 1 + 2�t(m;m1 +�m)

+ �t2
�
2(m;m2 +�2

m +�m1) + jm1 +�mj2
�
+O(�t3) (3.13)

j(I ��t�)�1 ~mj�1 = 1��t(m;m1 +�m)

� �t2(m;m2 +�2
m +�m1)�

�t2

2
jm1 +�mj2

+
3

2
�t2(m;m1 +�m)2 +O(�t3) (3.14)

(I ��t�)�1 ~m

j(I ��t�)�1 ~mj = m+�tm1 +�t2m2 +�t�m +�t2�m1 +�t2�2
m

� �t(m;m1 +�m)m��t2(m;�m1)m

� �t2(m;m1 +�m)m1 ��t2(m;m1 +�m)�m

� �t2[(m;m2 +�2
m) +

1

2
jm1 +�mj2

� 3

2
(m;m1 +�m)2]m +O(�t3) (3.15)
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From (3.15), we see that in order to satisfy (3.12), m1 and m2 must obey

(m1; m) = 0 (3.16)

@m1

@t
+
1

2

@
2
m

@t2
= �~m1 � (m;�m) ~m1

�
n
(m;�~m1) +

1

2
j ~m1j2

� 3

2
(m;�m)2 + (m;m2)

o
m (3.17)

where ~m1 = m1 +�m. We can rewrite (3.17) as

@m1

@t
= �m1 + a(x; t)m1 + b(x; t)� �m (3.18)

where a(x; t) = jrmj2; b(x; t) = �2
m + jrmj2�m � 1

2
mtt are known functions depending

on m(x; t). �(x; t) can be viewed as the Lagrangian multiplier for the constraint (3.16). In

Appendix A, we show that with initial and boundary conditions

m1(x; 0) = 0;
@m1

@n

���
�
= 0 (3.19)

there exists an unique �(x; t) such that the solution m1(x; t) of the linear equation (3.18)

satis�es (3.16). Once m1 is determined, m2 is chosen so that (3.17) and (3.18) are consistant.

This completes the construction of ~m.

Now we can proceed with the error estimates.

Let en(x) = m
n(x)� ~m(x; tn); �m = (I ��t�)�1 ~m(tn); ~e = m

? � �m. Then from (3.12),

we have

e
n+1 = m

n+1 � ~m(x; tn+1) =
m

?

jm?j �
�m

j �mj +O(�t3) (3.20)

Using the elementary inequality:

�����
m

?

jm?j �
�m

j �mj

����� � max
� 1

jm?j;
1

j �mj
�
jm? � �mj; (3.21)

we obtain

jen+1j � max
� 1

jm?j;
1

j �mj
�
j~ej+O(�t3) (3.22)

Lemma 1: Assume that

(I ��)u = f (3.23)
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@u

@n

���
�
= 0 (3.24)

where u = (u1; u2; u3); f = (f1; f2; f3): Then

max
x
juj � max

x
jf j (3.25)

Proof: A direct computation gives

�juj = 1

juj
h
(u;�u) + jruj2 � j(u;ru)j2

juj2
i

(3.26)

Therefore

(I ��)juj = juj ��juj

=
1

juj(u; f)�
1

juj
�
jruj2 � j(u;ru)j2

juj2
�

� 1

juj(u; f) � jf j (3.27)

We also have @

@n
juj = 0 at the boundary. Now (3.25) follows directly from the strong

maximum principle.

Continue now with the proof of the theorem. We have from (3.22) and the previous

lemma, that

jen+1j � max
� 1

jm?j;
1

j �mj
�
jenj+O(�t3) (3.28)

Let T ? be a time (which may depend on �t) such that

1

jm�j �
1

j �mj +�t (3.29)

for 0 � t � T
?. Since 1

j �mj
� 1 + C�t for some constant C which depends only on t and m,

we get

jen+1j � (1 + C�t)jenj+O(�t3) (3.30)

for a di�erent C. Therefore

jen+1j � C0�t
2 (3.31)

if n�t � T
?
: Here C0 does not depend on �t.

Now let us estimate T ?. Assume that (3.29) holds for 0 � t � n�t: Then for t = (n+1)�t;

1

jm?j �
1

j �mj �
jm? � �mj
jm?jj �mj �

Co�t
2

jm?jj �mj �
C�t2

jm�j (3.32)

Hence
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1

jm?j � 1

1� C�t2
1

j �mj

� 1

j �mj + C1�t
2 (3.33)

where C1 does not depend on �t. If �t is small enough such that C1�t < 1, we see that

(3.29) is still satis�ed at (n+1)�t. This argument shows that T ? can be any preset positive

value T by choosing �t small enough, depending only on T . This completes the proof.

3.2 The second order scheme

Our next task is to look for the second order versions of the projection method. It is easy

to check that the two-step method

m
? �m

n

�t
= �

m
? +m

n

2
(3.34)

m
n+1 =

m
?

jm?j
gives only a �rst order accurate approximation. However, we can add correction terms to

(3.34) to achieve the second order accuracy.

We solve the heat ow of harmonic map

mt = �m + jrmj2m (3.35)

with the following scheme

m
� �m

n

�t
= ��m� + f(mn) + �tg(mn) (3.36)

m
n+1 =

m
�

jm�j (3.37)

where �, f and g are to be determined so that the scheme is second order, i.e.

mjt=tn+1 =
(I � ��t�)�1(m +�tf + (�t)2g)

j(I � ��t�)�1(m +�tf + (�t)2g)j jt=tn +O((�t)
3) (3.38)

=
H(t)

jH(t)j jt=tn +O((�t)
3)

where

H(t) = (I � ��t�)�1(m(t) + �tf(m(t)) + (�t)2g(m(t))) (3.39)

� m+�t(f + ��m) + (�t)2(g + ��f + �
2�2

m): (3.40)
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Simple calculations (in Appendix) show that we shall take

f =
1

2
�m

and

g = r(jrmj2) � rm:
i.e. gj = r(jrmj2) � rmj for j = 1; 2 and 3. Therefore, we have a second order scheme

m
� �m

n

�t
=

1

2
(�m� +�mn) + �tr(jrmnj2) � rmn (3.41)

m
n+1 =

m
�

jm�j (3.42)

Note that (3.41) is no longer unconditionally stable due to the the form of the correction

term. However, it is easy to see that the CFL condition is dt

dx
� C. For the example S6 in

Section 4, C is calculated numericallly to be 0.509.

3.3 Extension to the Landau-Lifshitz equation

To extend the projection method to the Landau-Lifshitz equation, we will use (1.7). To

simplify writing we will omit the coeÆcients  and 1+2


and consider

mt �m�mt = �m� (m��m) = �m + jrmj2m (3.43)

The simplest projection scheme for (3.43) is given by the following two step procedure

m
� �m

n

�t
�m

n � m
� �m

n

�t
= �m� (3.44)

with the boundary condition @m�

@n
j� = 0, and

m
n+1 =

m
�

jm�j (3.45)

We can formally write (3.44)-(3.45) as

m
n+1 =

(I �m
n ���t�)�1mn

j(I �mn ���t�)�1mnj (3.46)

It is easy to see that the scheme is �rst order accurate. Similar calculations give a second

order scheme as following
8>>>>>><
>>>>>>:

m�
�mn

�t
�m

n � m�
�mn

�t
= 1

2
(�m� +�mn)

+(�t)2fr(jrmnj2) � rmn + 1
2
jrmnj2B�mng

m
n+1 = m�

jm�j

(3.47)
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where

B = (I �m
n�)�1 � I

Again, convergence of the scheme (3.44) and (3.45) is veri�ed by computing the exact solution

(2.6) for equation (3.43) with a forcing term. The following table shows the ratio of the

maximum error to �t for di�erent �t. A slightly better than �rst order accuracy is obtained

in this case.
emax=�t

T �t=0.01 �t=0.005 �t=0.0025

0.200000 3.831069 3.179168 2.555914

0.400000 4.015820 3.355095 2.747515

0.600000 4.230660 3.535197 2.950982

0.800000 4.399771 3.680398 3.126004

1.000000 4.558102 3.825170 3.287008

4 Comparison of the performances of various numeri-

cal schemes

In this section, we present numerical results for equations (1.11), (1.12) and (2.9) in one

dimension. We will compare the results for various schemes. The equations are solved on

interval [0; �] with initial conditions

m(x; 0) =

0
B@

cos(x=2) sin(x)

sin(x=2) sin(x)

cos(x)

1
CA

The \exact" solution is calculated by the fourth order Runge-Kutta scheme in time and

the second order center di�erence with 800 grid points and �t = 10�6.

We will give numerical results for the following schemes:

(1) Forward Euler for (1.11)

m
n+1 �m

n

�t
= �mn � (mn ��hm

n) (S1)

(2) Forward Euler for (1.12)

m
n+1 �m

n

�t
= �hm

n + jrhm
nj2mn (S2)

(3) Forward Euler for (2.9)

m
n+1 �m

n

�t
= (mn

; m
n)�hm

n + jrhm
nj2mn (S3)

14



(4) Backward Euler for (1.12)

m
n+1 �m

n

�t
= �hm

n+1 + jrhm
nj2mn (S4)

(5) The �rst order projection method for (1.12)

8><
>:

m��mn

�t
= �hm

�

m
n+1 = m�

jm�j

(S5)

(6) The second order projection method for (1.12)

8><
>:

m�
�mn

�t
= �h

m�+mn

2
+�trh(jrhm

nj2)rhm
n

m
n+1 = m�

jm�j

(S6)

The following table shows the error for these schemes with �t = 0:0001, �x = �=200.

For S2, the error grows too fast. Stable results for S3, S4, S5 can also be obtained with �t

as large as 0.1 for the �x given above. For S6, �t is slightly restrictive to 0.08. However,

S1 can only be run for �t = 0:0001 due to CFL condition.

The results show that for the �rst order schmes, the accuracy for S1 and S5 are compa-

rable and both are much better than S2, S3, and S4. However S5 is unconditionally stable

(although more expensive) while S1 is restricted by the CFL condtion. Therefore the pro-

jection scheme is a better scheme not only for its simplicity but also for its stability and

accuracy.

T S1 S2 S3 S4 S5 S6

0.5 0.75291E-05 0.60626E-01 0.48056E-04 0.34438E-04 0.93681E-05

1.0 0.63458E-05 0.80183E-01 0.11777E-03 0.14998E-04 0.41371E-05

1.5 0.59942E-05 0.11340E+00 0.24742E-03 0.51972E-05 0.14723E-05

2.0 0.59510E-05 0.12362E+00 0.46078E-03 0.24537E-05 0.67426E-06

2.5 0.59471E-05 0.12292E+00 0.81217E-03 0.24376E-05 0.55257E-06

3.0 0.59468E-05 0.12275E+00 0.13906E-02 0.24354E-05 0.54592E-06

3.5 0.59468E-05 0.12273E+00 0.23421E-02 0.24350E-05 0.54819E-06

4.0 0.59468E-05 0.12273E+00 0.39047E-02 0.24350E-05 0.55060E-06

4.5 0.59468E-05 0.12273E+00 0.64647E-02 0.24350E-05 0.55304E-06

5.0 0.59468E-05 0.12273E+00 0.10642E-01 0.24350E-05 0.55573E-06

CPU(seconds) 22.64 28.66 44.45 40.60 56.21
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5 Appendix A: A proof of existence of Lagrangian mul-

tiplier

Let G(x; y; t) be the Green's function for the equation

ut = �u+ a(x; t)u

with boundary condition
@u

@n

���
�
= 0;

the solution of (3.18) is given by

m1(x; t) =

Z t

0

Z


G(x; y; t� s)(b(y; s)� �(y; s)m(y; s))dyds:

If we require

(m1; m) = 0;

then we have
Z t

0

Z


G(x; y; t� s)�(y; s)(m(y; s); m(x; t))dyds

=

Z t

0

Z


G(x; y; t� s)(b(y; s); m(x; t))dyds = f(x; t) (5.1)

Di�erentiate with respect to t, we have

�(x; t) +

Z t

0

Z


Gt(x; y; t� s)�(y; s)(m(y; s); m(x; t))dyds

+

Z t

0

Z


G(x; y; t� s)�(y; s)(m(y; s); mt(x; t))dyds

= ft(x; t) (5.2)

Apply the Laplacian to (5.1), we have

Z t

0

Z


�G(x; y; t� s)�(y; s)(m(y; s); m(x; t))dyds

+ 2
X
k

Z t

0

Z


Gxk(x; y; t� s)�(y; s)(m(y; s); mxk(x; t))dyds

+

Z t

0

Z


G(x; y; t� s)�(y; s)(m(y; s);�m(x; t))dyds

= �f(x; t) (5.3)

(5.2)-(5.3) gives

�(x; t) +

Z t

0

Z


G(x; y; t� s)�(y; s)(m(y; s); mt(x; t))dyds
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� 2
X
k

Z t

0

Z


Gxk(x; y; t� s)�(y; s)(m(y; s); mxk(x; t))dyds

�
Z t

0

Z


G(x; y; t� s)�(y; s)(m(y; s);�m(x; t))dyds

�
Z t

0

Z


G(x; y; t� s)a(x; t� s)�(y; s)(m(y; s); m(x; t))dyds

= ft ��f = f
�(x; t) (5.4)

We are going to prove the existence of solution �(x; t) for (5.4) by a �xed point argument.

Since m(x; t) is given, we may assume that

supx;y2
;s�t�T

n
j(m(y; s);rm(x; t))j; j(m(y; s);�m(x; t))j;

j(m(y; s); mt(x; t))j; ja(x; t� s)(m(y; s); m(x; t))j
o
�M

where M is a constant. The Green's function G(x; y; t) satis�es the following properties (see

e.g. [3]) Z


jG(x; y; t)jdy � C1 0 < t < T (5.5)

Z


jrxG(x; y; t)jdy �

C2p
t

0 < t < T (5.6)

Here C1; C2 are constants. It is easy to see that (5.5) (5.6) are true for the heat kernel

K(x; y; t) =
1

2n(�t)
n

2

exp[�
P
(xi � yi)

2

4t
]

and K(x; y; t) is the leading approximation to G(x; y; t) near the singularity [3].

The �xed point argument is formulated as following

�
n+1(x; t) +

Z t

0

Z


G(x; y; t� s)�n(y; s)(m(y; s); mt(x; t))dyds

� 2
X
k

Z t

0

Z


Gxk(x; y; t� s)�n(y; s)(m(y; s); mxk(x; t))dyds

�
Z t

0

Z


G(x; y; t� s)�n(y; s)(m(y; s);�m(x; t))dyds

�
Z t

0

Z


G(x; y; t� s)a(x; t� s)�n(y; s)(m(y; s); m(x; t))dyds

= ft ��f = f
�(x; t) (5.7)

Let

A
n(t) = sup

n
j�n(x; s)� �

n�1(x; s)j j x 2 
; 0 < s < t

o
;

then we have the following estimate from (5.7)

A
n+1(t) � C

Z t

0

1p
t� s

A
n(s)ds+ C

Z t

0
A

n(s)ds:

for some constant C. A standard �xed point argument will then show that �n(x; t) converges

uniformly and therefore we have a unique solution for (5.4).
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6 Appendix B: Derivation of the second order scheme

The right hand side of (3.39)

H

jHj +O((�t)3) = m + �t(f + ��m� (m; f + ��m)m)

+ (�t)2(g + ��f + �
2�2

m� (m; f + ��m)(f + ��m)

� (m; g + ��f + �
2�2

m)m� 1

2
jf + ��mj2m

+
3

2
(m; f + ��m)2m) +O((�t)3)

The left hand side of (3.39) can be expended to

mt=tn+1 = m +mt�t+
1

2
mtt(�t)

2jt=tn +O(�t)3)

In order that (3.38) is satis�ed, we need

mt = f + ��m� (m; f + ��m)m (6.1)

and

1

2
mtt = g + ��f + �

2�2
m� (m; f + ��m)(f + ��m)

� (m; g + ��f + �
2�2

m)m� 1

2
jf + ��mj2m

+
3

2
(m; f + ��m)2m (6.2)

>From (3.35), we have that

1

2
mtt =

1

2
(�m + jrmj2m)t

=
1

2
�2

m+
1

2
�(jrmj2)m +r(jrmj2)rm

+ jrmj2�m + (rm ��rm)m +
3

2
jrmj4m (6.3)

(3.35) and (6.1) imply that

f = (1� �)�m:

We will take � = 1
2
, f = 1

2
�m. Assuming (g;m) = 0 and equating right handside of (6.2)

and (6.3), we have

g = r(jrmj2)rm:
Therefore, we have a second order scheme

m
� �m

n

�t
=

1

2
(�m� +�mn) + �tr(jrmnj2)rmn (6.4)

m
n+1 =

m
�

jm�j (6.5)
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