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Multi-scale multi-physics modeling
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Multi-scale multi-physics modeling

Multi-scale modeling: A very ambitious program

Objective: remove the ad hoc part of the modeling process and use only truly reliable models.
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Multi-scale multi-physics modeling

Sequential vs concurrent coupling

@ sequential coupling: precompute the macro-scale model using the micro-scale model.
@ concurrent coupling: couple the macro-scale and the micro-scale models " on-the-fly".
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Figure: schematic of the heterogeneous multi-scale method (E and Engquist 2003)

Difficulty: parametrizing the components needed in the macro-model, using data from the
micro-scale model. For problems without separation of scales, this has been an essential

obstacle.



Multi-scale multi-physics modeling

Machine learning comes to the rescue

Two objectives:
@ multi-scale modeling in situations without scale separation

@ interpretable and truly reliable physical models with machine learning
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Concurrent learning
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© Concurrent learning

October 15, 2019 7 /52



Concurrent learning

Sequential vs concurrent learning

Where are the data sets? (It is very expensive to get the data)

o sequential learning: first collect labeled data {x;, y,}, then perform learning
@ concurrent learning: generate the data set on the fly as learning proceeds

compare with "active learning”: having unlabeled data {x,}, and decide which ones to
label and use them to perform learning

concurrent learning: generate “optimal data set” (both unlabeled and labeled,
representative enough yet as small as possible)

the latter is a more interactive process
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Concurrent learning

The exploration-labeling-training procedure for concurrent learning

Zhang, Wang and E (2018), J. Chem. Phys.

Start out with no (macro-scale) model, no data; but with a micro-scale model.
Repeat the following steps:

@ exploration: explore the configuration space, and decide which configurations need to
be labeled.

@ labeling: compute the micro-scale solutions for the configurations that need to be
labeled. This is our data set.

© training: train the macro-scale model, and use it to help the exploration
Similar to “active learning” but more interactive
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Concurrent learning

DP-GEN: concurrent learning for uniformly accurate model
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for Materials Simulation.” arXiv:1810.11890 (2018).
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Molecular modeling
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© Molecular modeling

October 15, 2019 11 / 52



Molecular modeling
Example 1: Molecular dynamics

Traditional dilemma: accuracy vs cost.

Two ways to calculate £/ and F':

@ Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive:

E = (Wo|HE W), pdi = HE ¢+~ Nijob;.
J
@ Empirical potentials: efficient but unreliable. The Lennard-Jones potential:
o

Vi =42 = () E=53 Ve

Hii i]
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Molecular modeling

Integrating ML with molecular modeling

New paradigm:
@ quantum mechanics model — data generator
@ machine learning — parametrize (represent) the model
@ molecular dynamics — simulator
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Molecular modeling

Interaction potential between atoms in molecular dynamics

Consider a system of N atoms, r = {r{, 79, ..., "N }.
the coordinate matrix R € RV*3:
R={rl, - v, v}, ri=(zi,u2).
r.. a pre-defined cut-off radius.
For atom 4, defined its neighbors N, (i) = {j|ri; < 7.}, and rji =r; — 7,
Define 7's local environment matrix

Ri — {’I”%;, T 77‘};7 T 770]7\}2',75}T7 Tji = <:Cji7 Yjis Zﬂ)

E(R) = E: a map from the coordinate matrix to the potential energy;
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Molecular modeling

Deep Potential: construction

Structure: composite neural networks (NNs). £ = > E".

R; R} D} Hidden layers E,
R 2 {R 2_;} {ng] Hidden layers /5 2
R; R} D} Hidden layers E;
R;, Dﬂ
R, D, == E;

Models of this type are extensible, which implies linear scaling. Behler, J., Parrinello, M. (2007). Phys.
Rev. Lett., 98(14), 146401.

Deep Potential (Comm. Comp. Phys. 23.3 (2018): 629-639.), DPMD (Phys. Rev. Lett. 120 (2018), 143001)



Molecular modeling

The importance of preserving the symmetries
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Molecular modeling

Preserving symmetry: Poor man's version

@ remove translational and rotational symmetry by fixing a local frame of reference
@ remove permutational symmetry by fixing an ordering of the atoms in the neighborhood

Creates small discontinuity when atoms switch their orders.
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Figure: deep potential molecular dynamics (DPMD)
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Molecular modeling

Preserving the symmetries

Translation, rotation, and permutation.

Tyf(r) = f(r+b), Ruf(r)= f(ri),

@ Translation and Rotation:

i
ik = Tji " Thi-

Lemma: sz is an overcomplete array of basic invariants with respect to rotation, reflection, and translation.

@ Permutation:

> gl
JEN (i)

Lemma: A function f(ry,...,7j, ..., n,) is invariant to the permutation of instances in r;;, if and only if it can be

decomposed in the form p(}_;c ;) 9(7ji)7i), for suitable transformations g and p.
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Molecular modeling

Deep potential: smooth version

The whole sub-network consists of an encoding net D'(R") and a fitting net E'(D").
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(Rotation: RY(R')!, permutation: (G1)IR" and (R")! G*2.)
DeepPot-SE (arxiv: 1805.09003, NIPS 2018), see also Behler and Parrinello, PRL 2007.
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Molecular modeling

DP-GEN: Automatic generation of deep potentials using

concurrent learning

The exploration-labeling-training procedure

@ Exploration:

e Sample the (T, p) space
e For each value of (T, p), sample the canonical ensemble (using DPMD).
@ In addition, initialize the exploration with a variety of different initial configurations.

@ Labeling: Using DFT (with periodic boundary condition)
@ Training: Using “deep potential”
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Molecular modeling

Systems Al Mg Al-Mg alloy

Type Lattice F#atom #Confs #Data #Confs #Data #Confs #Data

FCC 32 15,174,000 1,326 15,174,000 860 39,266,460 7,313

Bulk HCP 16 15,174,000 908 15,174,000 760 18,999,900 2,461

Diamond 16 5,058,000 1,026 5,058,000 543 5,451,300 2,607

SC 8 5,058,000 713 5,058,000 234 2,543,940 667

FCC (100) 12 3,270,960 728 3,270,960 251 62,203,680 1,131

FCC (110) 16%,20° 3,270,960 838 3,270,960 353 10,744,2720 2,435

Surface FCC (111) 12 3,270,960 544 3,270,960 230 62,203,680 1,160

HCP (0001) 12 3,270,960 39 3,270,960 109 62,203,680 176

HCP (1010) 12 3,270,960 74 3,270,960 167 62,203,680 203

HCP (1120) 16%,20° 3,270,960 293 3,270,960 182 107,442,720 501

sum 60,089,760 6,489 60,089,760 3,689 529,961,760 18,654
Pure Al

bMg and Al-Mg alloy

~0.005% configurations explored by DPMD are selected for labeling.
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Molecular modeling

Case 1: accuracy is comparable to the accuracy of the data
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Molecular modeling

Case 2: structural information of DF T water

Radial and angular distribution function of liquid water (PI-AIMD):
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Molecular modeling

Open-source softwares: DeePMD-kit

@ GitHub, Inc. [US] | https://github.com/deepmodeling/deepmd-kit

Data DeePMD-kit
Generator Data Train/Test Table of contents
DFT, AIMD, QMC, ... raw data (T)' * Install DeePMD-kit
¢ § o |nstall tensorflow's Python interface
ki . = o Install tensorflow's C++ interface
IE)/IeDeSPllrlp[[)D:rI: descrlptors CEEJ o Install xdrfile
= o Install DeePMD-kit
MD Interface Model n[;ivevl(p)l\r/lk[; r,:—;r o Install Lammps' DeePMD-kit module
classical MD: LAMMPS ¢ gh * Use DeePMD-kit
path integral MD: i-PI Predictions 3 ° Pre.pare data
o Train a model
o Freeze the model
o Run MD with Lammps
TensorFlow lib DeePMD-kit lib o Run path-integral MD with i-P|
standard Tensor OP descript OP, force OP, o Run MD with native code
& Compt. Graph & virial OP « Code structure

* License
T —

@ TensorFlow: efficient network operators

o LAMMPS, i-Pl; MPI/GPU support.

Free download from https://github.com/deepmodeling /deepmd-kit
H. Wang,. et al, .Comp.Phys.Comm., 0010-4655 (2018).
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Molecular modeling

Open-source softwares: DP-GEN
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Free download from https://github.com /deepmodeling/dpgen
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Molecular modeling

Discussion group

& > C © NotSecure | bbs.deepmd.org/bbs_en/forum.php % ® ® R o (2 )
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Molecular modeling

Water phase diagram modeled by DP+SCAN

(a) Exp. collected by Martin Chaplin

(b) current result
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Molecular modeling

DP-GEN for water

Temperature
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Reference model: DFT at the classical SCAN level;
Starting configurations: relaxed Ice I-XV at T" = 0 K and equilibrated liquid at 1" = 330 K;
Range of thermodynamic conditions: red dashed box;

number of MD snapshots: DPMD exploration: 1.4 billion, DFT calculation: 32 thousand (~0.002%
of the former).

Typical AIMD trajectory: 100 thousand snapshots (50-100 ps).

@ number of DP-GEN iterations: 100.
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Molecular modeling

Lithium diffusion in solid-state electrolyte

Ability to handle multi-component systems, here the LiGePS-type systems.
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Molecular modeling

@ physical/chemical problems

e understanding water (phase diagram of water, including reactive regions; phase transition: ice to
water, ionic liquid to super-ionic ice; nuclear quantum effect: collective tunneling, isotope effect;
reactive event: dissociation and recombination; water surface and water/TiO2 interface; spectra:
infra-red; Raman; X-ray Absorption; exotic properties: dielectric constant; density anomaly, etc.

@ physical understanding of different systems that require long-time large-scale simulation with high
degrees of model fidelity ( high-pressure iron: fractional defect; phase boundary; high-pressure
hydrogen: exotic phases)

o catalysis (Pt cluster on MoS2 surface; CO molecules on gold surface, etc.)

@ materials science problems

e battery materials (diffusion of lithium in LGePS, LSGeSiPS, etc.; diffusion of Se in Cu2Se alloy)
e high entropy/high temperature alloy (CoCrFeMnNi alloy; Ni-based alloy)

© organic chemistry/bio problems

@ crystal structure prediction of molecular crystals;
@ protein-ligand interaction;
e protein folding.
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Reinforced dynamics for the exploration of very high dimensional spaces

Outline

@ Reinforced dynamics for the exploration of very high dimensional spaces
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Reinforced dynamics for the exploration of very high dimensional spaces

Exploration of very high dimensional configuration spaces

Problems of interest:
@ structural optimization (e.g. protein folding)
@ free energy calculation
@ coarse-grained molecular dynamics
Metadynamics (Laio and Parrinello, 2002)
@ free energy is computed by adding up little Gaussians
@ free energy is used to help exploration

Very effective when the number of collective variables is small.
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Reinforced dynamics for the exploration of very high dimensional spaces

Collective variables and free energies

Consider a pre-defined set of collective variables (CV) s. Free energy surface (FES) A(s):

A(s) = —%1np<s>, p(s) = / e PUD§(s(r) — s) dr,

Mean forces
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Reinforced dynamics for the exploration of very high dimensional spaces

Reinforced dynamics

@ exploration:

@ biased molecular dynamics:
filr) = =V, U(r) + o(e(s(r))) Vi, A(s(r))

o is an activation function that switches on and off the biasing term
o decide which ones to label: train an ensemble of networks F';, 7 = 1,--- , N and compute

variance = (|F;(s) — F(s)|*), F(s) = (F(s))

o labeling: compute the mean force (using restrained MD)
@ training: deep potential-like coarse-grained model

Can now handle many collective variables
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Reinforced dynamics for the exploration of very high dimensional spaces

Reinforced dynamics

o Left: Tripeptide: brute-force simulation (~50 us) v.s. RiD (10 ns biased + 190 ns
restrained):

@ Right: higher dimensional FES: ala-10 and 20 CVs.
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Reinforced dynamics for the exploration of very high dimensional spaces

Reinforced dynamics

More recently: Trp-cage folded (20 amino acids, 38 CVs)

Now we are folding more.
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Reinforced dynamics for the exploration of very high dimensional spaces

Coarse graining (CG)

Given CG variables s. Free energy surface (FES), or CG potential, A(s):

Als) = —%m p(s), p(s) = % / U5 (s(r) — 5) drr

Radial distribution functions (left) and angular distribution functions (right):
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(J. Chem. Phys. 2018, 149(3): 034101.)
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Kinetic model for gas dynamics

Outline

© Kinetic model for gas dynamics
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Kinetic model for gas dynamics

Modeling gas dynamics
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Kinetic model for gas dynamics

Boltzmann Equation

One-particle density function f(x, v, 1)

1
atf+v-vmf=gQ(f), veR), xeQCR’

¢ = Knudsen number and () is the collision operator.

Macroscopic state variables: p, u and T' (density, bulk velocity and temperature)

:/fdv, u = /fvdv T_—/f|v—u\2dv

When ¢ < 1, Boltzmann can be approximated by Euler:
U +V,-FU) =0,

with p = pT', E = %qu + %pT,
U = (p,pu, E)’

F(U) = (pu, pu @ u+pl, (E + p)u)"
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Kinetic model for gas dynamics

Conventional Moment Method

Proceed in 3 steps:

1. Start with the choice of a finite-dimensional linear subspace of functions of v (usually to
be polynomials, e.g., Hermite polynomials).

2. Expand f(x,wv,t) using these functions as bases and take the coefficients as moments
(including macroscopic variables p, u, T, etc.).

3. Finally close the system with simplified assumptions, e.g., truncating moments of higher
orders

QU + V- F(U W) =0,

1
OW + Vs GU,W)=_R(U.W)

For instance, in Grad 13-moment system, (U, W) is constructed based on the moments of
the bases {1,v, (v —u) ® (v —u), |v — ul*(v — u)}.
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Kinetic model for gas dynamics

Machine learning-based moment method

Objective: construct an uniformly accurate (generalized) moment model using machine
learning.

1: Learn the Moments through Autoencoder
Find an encoder W that maps f(-,v) to generalized moments W € RY and a decoder ®
that recovers the original f from U, W

W =VU(f)= /Wf dv, OU,W)(v)=h(v;U,W).

The goal is essentially to find optimal w and h parametrized by neural networks through
minimizing
Ef - SN+ Ay(n(f) = hy(U, W)™,

n(f) denotes entropy.
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2: Learn the Fluxes and Source Terms in the PDE

Recall the general conservative form of the moment system

QU +V,-F(U,Wie) =0,
oW +V, - GU,W:e)=RU,W:e¢).

Rewrite it into (variance reduction)

OU + V- [Fy(U)+ F(U,W:e)] =0,
OW + V- [GoU)+ GU,W;e)| =R(U,W;e¢).

Fy(U),Gy(U) are the fluxes of the moments U, W under the Maxwellian distribution.
Our goal is to obtain ML models for F', G, R from the original kinetic equation.

Issues: (1) physical symmetries (e.g. Galilean invariance); (2) data generation (active
learning algorithm); (3) locality vs. non-locality of the model
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look for new
\ F U, w) —> trajectories of f
trajectories of f with large
/ \ GU,W),RU, W) —> prediction error
DU W) ~ in long time
preparing the data  finding the moments learning the closure exploring the data

Figure: Schematic diagram of the machine learning-based moment method

@ exploration: random initial conditions made up of waves and discontinuities
@ labeling: solving kinetic equation (Boltzmann equation for Maxwell molecules)
@ training: Galilean invariance
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Galilean Invariant Moments

Galilean invariance of the Boltzmann equation:

flle,u,t) = flx—tu,v—ut).

Wos = w(f) = [ sy ( VT )
Closure:

1
atVVGaI + vw : GGaI(U7 WGaH U]) — ERGaI<U7 WGaI)-

Moments:

The data efficiency is better than the previous one since it learns the dynamical system more
intrinsically.
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e ~ Logl0-Uniform(—3, 1), constant across the domain; initial profiles consist of a
combination of a few sin waves and shocks.

Size of dataset array: 200 x 100 x 48 x 48 x 100. Specify W € R”.
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Figure: Sample profiles of p, pu, E (from left to right) at t = 0,0.05,0.1 (from top to bottom), ¢ = 8.10
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e varies from 1073 to 10 in the domain; initial profiles are the same as before
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Figure: Profiles of p, pu, E (from left to right) at ¢ = 0,0.05,0.1 (from top to bottom)
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Numerical results

Learned functions w(v) as generalized moments
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Other possible applications of concurrent learning

@ solving PDEs
@ model-based reinforcement learning
@ control

Essentially any time we have a code (or a simulator) to generate the states and the data.
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Outline

© Concluding remarks
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Concluding remarks
Concluding remarks

@ Concurrent learning is a very powerful tool for multi-scale modeling.

e DPMD allows us to perform MD simulation of large systems with quantum accuracy

@ RiD allows us to compute free energy function with many collective variables

@ ML based moment closure allows to obtain hydrodynamic models for the Boltzmann equation for
Maxwell molecules that are uniformly accurate for a wide range of Knudsen numbers

These are models, not just algorithms (sequential multi-scale modeling paradigm)
The methodologies are quite general
It is important to take into account symmetries and other physical constraints

New paradigm for multi-scale models: analogy to Euler's equations for complex gases
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MSML 2020

A new annual conference:

Mathematical and Scientific Machine Learning (MSML)

First meeting:

@ Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)
e Time: July 15-17, 2020

@ Location: Princeton

@ Submission deadline: November 30, 2019

@ website: http://msml-conf.org
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