
Machine Learning and Computational Mathematics

机机机器器器学学学习习习与与与计计计算算算数数数学学学

Weinan E (鄂维南)

How machine learning will impact scientific computing and computational science?

How computational mathematics can impact machine learning?

机器学习会给计算数学带来什么样的改变？

计算数学能够怎样帮助推进机器学习的研究？
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ML can do wonders: Approximating high dimensional functions

Given S = {(xj, yj = f ∗(xj)), j ∈ [n]}, learn (i.e. approximate) f ∗.

Example: Cifar 10 dataset (f ∗ is a discrete function defined on the space of images)

Input: each image ∈ [0, 1]d,
d = 32× 32× 3 = 3072.

Output: f ∗ ∈ {airplane,
..... , truck}.
f ∗ : [0, 1]3072 → {airplane,
..... , truck}.
f ∗(each image) = category
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Sampling unknown high dimensional distributions

The probability distribution of all real and fake human faces is an unknown distribution in
high dimension.
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Solving high dimensional Bellman equations

The optimal strategy obeys some Bellman-like equation.
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All these are made possible by our ability to
accurately approximate high dimensional
functions using finite pieces of data.

This opens up new possibilities for attacking
problems that suffer from the “curse of
dimensionality” (CoD):

As dimensionality grows, computational cost grows exponentially fast.
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CoD: Solving PDEs using traditional numerical methods

usually d = 1, 2, 3, 4
handles Poisson, Maxwell, Euler, Navier-Stokes, elasticity, etc. well.

sparse grids: d ∼ 10
we can barely solve Boltzmann for simple molecules.

d ≥ 100, impossible
can’t deal with realistic control problems, Fokker-Planck or Boltzmann for complex molecules,

many-body Schrödinger, etc.

This is where machine learning can help.

Han and E (2016, NIPS workshop), E, Han and Jentzen (2017, Comm Math Stat), Han, Jentzen and E (2018, PNAS)
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Other examples of problems that face CoD

quantum many-body problems

classical many-body problem, e.g. protein folding

turbulence

solid mechanics (plasticity, nonlinear elasticity)

control

......

multi-scale modeling (gas dynamics, combustion, non-Newtonian fluids, etc)

Can machine learning help?

Can the success of ML be extended beyond traditional AI ?
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Analogy with the situation for finite element method (FEM)

FEM: structural mechanics → general PDEs

ML: traditional AI → general function
approximation problems

Functions are basic tools in mathematics.

Imagine that we have something like “polynomials” but works in high dimension!
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Example 1: Protein folding

{xj}= positions of the atoms in a protein
U({xj}) = potential energy (chemical bonding, Van der Waals, electro-static, etc).

“Minimize”U, or sample ρ =
1

Z
e−βU , β = (kBT )−1

Folding Trp-cage (20 amino acids, 38 collective variables)

Han Wang, Linfeng Zhang, Weinan E (2018)
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Multi-grid viewpoint of protein folding

Traditional multi-grid: Minimize Ih(uh) = 1
2u

T
hLhuh − fTh uh

projection operator: P : uh → uH
effective operator on scale H: LH = P TLhP .

effective problem on scale H: Minimize IH(uH) = 1
2u

T
HLHuH − fTHuH

Multi-grid approach to protein folding: “Minimize” U(x1,x2, · · ·xN)

collective variables: s = (s1, · · · , sn), sj = sj(x1, · · · ,xN), (n < N)

effective energy = free energy:

A(s) = −1

β
ln p(s), p(s) =

1

Z

∫
e−βU(x)δ(s(x)− s) dx,

effective problem on coarser scale: Minimize A(s) = A(s1, s2, · · · , sn)

Now we have to find the function A first!
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A will be represented by neural networks.

data comes from “accelerated” molecular dynamics, using adaptive sampling:

generate a sequence of samples {sj} adaptively, and use them the train a more and
more accurate neural network approximation to A.

The EELT (exploration- examination-labeling-training) algorithm (Zhang et al (2018)):

exploring the s space, say by sampling 1
Ze
−βA(s) with the current approximation of A.

for each state explored, decide whether that state should be labeled, say use an
a posteriori error estimator.

labeling: compute the mean force (using restrained MD)

training: deep potential-like coarse-grained model

This is a general procedure that should work for a large class of nonlinear “multi-grid”
problems.
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2. DeePMD: Molecular dynamics with ab initio accuracy

mi
d2xi
dt2

= −∇xiV, V = V (x1,x2, ...,xi, ...,xN),

Key question: V =?

Two ways to calculate V :

Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive (limited to about 1000 atoms).

Empirical potentials: basically guess what V should be.
Efficient but unreliable.

Now: Use QM to supply the data needed to train a neural network model.
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Accuracy comparable to QM for a wide range of materials and
molecules

Linfeng Zhang, Jiequn Han, et al (2018)
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Adaptive generation of data: The EELT algorithm

∼0.005% configurations explored by DeePMD are selected for labeling.

Linfeng Zhang, Han Wang, et al (2019)
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The importance of preserving the symmetries

Jiequn Han, Linfeng Zhang, Roberto Car and Weinan E (2017)
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DeePMD simulation of 100M atoms with ab initio accuracy

D. Lu, et al, arXiv: 2004.11658; W. Jia, et al, arXiv: 2005.00223
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3. Coarse grained (CG) MD – A basic tool for chemical and
biological engineering

Traditional approach: Bead and spring models, no accuracy
DeePCG: ML-based models (combine the ideas mentioned above)

Figure: Radial distribution functions (left) and angular distribution functions (right)

L. Zhang, J. Han, H. Wang, R. Car and W. E, J. Chem. Phys. 2018
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4. Stochastic control (Han and E (2016))

Model dynamics (analog of ResNet):

st+1 = st + bt(st, at) + ξt+1,

st = state, at = control, ξt = noise.

min
{at}T−1

t=0

E{ξt}
{ T−1∑

t=0

ct(st, at(st)) + cT (sT )
}
,

Look for a feedback control:
at = at(st).

Neural network approximation:

at(st) ≈ ãt(st|θt), t = 0, · · · , T − 1

Optimization problem (SGD applies directly)

min
{θt}T−1

t=0

E{ξt}
{ T−1∑

t=0

ct(st, ãt(st|θt)) + cT (sT )},
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Network Architecture

Figure: Network architecture for solving stochastic control in discrete time. The whole network has (N + 1)T

layers in total that involve free parameters to be optimized simultaneously. Each column (except ξt)

corresponds to a sub-network at t.
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Example: Energy Storage with Multiple Devices

The setting is similar to the above but now there are multiple devices, in which we do not
find any other available solution for comparison.
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5. Nonlinear parabolic PDE

∂u

∂t
+

1

2
σσT : ∇2

xu + µ · ∇u + f
(
σT∇u

)
= 0, u(T, x) = g(x)

Reformulating as a stochastic optimization problem using backward stochastic differential
equations (BSDE, Pardoux and Peng (1990))

inf
Y0,{Zt}0≤t≤T

E|g(XT )− YT |2,

s.t. Xt = ξ +

∫ t

0

µ(s,Xs) ds +

∫ t

0

Σ(s,Xs) dWs,

Yt = Y0 −
∫ t

0

h(s,Xs, Ys, Zs) ds +

∫ t

0

(Zs)
T dWs.

The unique minimizer is the solution to the PDE with:

Yt = u(t,Xt) and Zt = σT (t,Xt)∇u(t,Xt).
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Deep BSDE Method

After time discretization, approximate the unknown functions

X0 7→ u(0, X0) and Xtj 7→ σT(tj, Xtj)∇u(tj, Xtj)

by feedforward neural networks ψ and φ.

This network takes the paths {Xtn}0≤n≤N and {Wtn}0≤n≤N as the input data and gives
the final output, denoted by û({Xtn}0≤n≤N , {Wtn}0≤n≤N), as an approximation to
u(tN , XtN ).

The error in the matching of given terminal condition defines the expected loss function

l(θ) = E
[∣∣g(XtN )− û

(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣2].
E, Han and Jentzen (Comm Math Stats 2017); Han, Jentzen and E (PNAS 2018)
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Stochastic control revisited

LQG (linear quadratic Gaussian) for d=100

dXt = 2
√
λmt dt +

√
2 dWt,

Cost functional: J({mt}0≤t≤T ) = E
[ ∫ T

0 ‖mt‖2
2 dt + g(XT )

]
.

HJB equation:
∂u

∂t
+ ∆u− λ‖∇u‖2

2 = 0

u(t, x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.
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Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0, . . . , 0)) when λ = 1, which achieves 0.17% in a runtime

of 330 seconds. Right: Optimal cost u(t=0, x=(0, . . . , 0)) against different λ.
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Black-Scholes Equation with Default Risk

∂u

∂t
+ ∆u− (1− δ)Q(u(t, x))u(t, x)−Ru(t, x) = 0

Q is some nonlinear function (Duffie et al. 1996, Bender et al. 2015 (d = 5))

Figure: d = 100. Deep BSDE achieves a relative error of size 0.46% in a runtime of 617 seconds.

Applications to pricing basket options, interest rate-dependent options, Libor market model,
Bermudan Swaption, barrier option, etc.
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6. Modeling gas dynamics

Kn =
mean free path

macroscopic length

1.1 Some History and Background 1 CONTINUUM MODELS

Kn10¡2 10¡1 1.0 10.0

½ ½

Euler�Eqn

equilibrium non-equilibrium

NSF�Eqn kinetic�regime free�flight
transition
regime

½ ½½

! !!!

Figure 1: Overview of the range of Knudsen number and various model regimes.

the moment systems lead to stable hyperbolic equations. However, in practical explicit
systems hyperbolicity is given only in a finite range due to linearization. In Junk (1998)
and Junk (2002) it is shown that the fully nonlinear maximum-entropy approach has
sever drawbacks and singularities. Furthermore, the hyperbolicity leads to discontinuous
sub-shock solutions in the shock profile. A variant of the moment method has been
proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum-entropy
10-moment system has been used by Suzuki and van Leer (2005).

Both fundamental approaches of kinetic theory, Chapman-Enskog and Grad, exhibit
severe disadvantages. Higher order Chapman-Enskog expansions are unstable and Grad’s
method introduces subshocks and show slow convergence. It seems to be desirable to
combine both methods in order to remedy their disadvantages. Such an hybrid approach
have already been discussed by Grad in a side note in Grad (1958). He derives a variant
of the regularized 13-moment equations given below, but surprisingly he neither gives any
details nor is he using or investigating the equations. In the last fifty years the paper Grad
(1958) was cited as standard source for introduction into kinetic theory, but, apparently,
this specific idea got entirely lost and seems not to be known in present day literature.

The Chapman-Enskog expansion is based on equilibrium and the corrections describe
the non-equilibrium perturbation. A hybrid version which uses a non-equilibrium as basis
is discussed in Karlin et al. (1998). They deduced linearized equations with unspecified
coefficients. Starting from Burnett equations Jin and Slemrod (2001) derived an extended
system of evolution equations which resembles the regularized 13-moment system. It is
solved numerically in Jin et al. (2002). However, the tensorial structure of their relations
is not in accordance with Boltzmann’s equation. Starting from higher moment systems
Müller et al. (2003) discussed a parabolization which includes higher order expressions
into hyperbolic equations.

The regularized 13-moment-equations presented below were rigorously derived from
Boltzmann’s equation in Struchtrup and Torrilhon (2003). The key ingredient is a Chapman-
Enskog expansion around a pseudo-equilibrium which is given by the constitutive relations
of Grad for stress tensor and heat flux. The final system consists of evolution equations
for the fluid fields: density, velocity, temperature, stress tensor and heat flux. The closure
procedure adds second order derivatives to Grad’s evolution equations of stress and heat
flux, thus regularizes the former hyperbolic equations into a mixed hyperbolic-parabolic
system with relaxation. The relaxational and parabolic part is only present in the equa-
tions of stress and heat flux and models the multi-scale dissipation of Boltzmann’s equa-
tion, see Struchtrup and Torrilhon (2003). Like the Boltzmann equation the R13 system
is derived for monatomic gases and all the results in this chapter are restricted to this
case. The extension to poly-atomic gases or mixtures is future work. The text book by
Struchtrup (2005b) provides an introduction to approximation methods in kinetic theory

RTO-EN-AVT-194 10 - 5 
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Boltzmann Equation

f (x,v, t) = phase space density function, ε = Kn, Q = the collision operator

∂tf + v · ∇xf =
1

ε
Q(f ), v ∈ R3, x ∈ Ω ⊂ R3,

When ε� 1, this can be approximated by Euler (projection of Boltzmann on low order
moments):

∂tU +∇x · F (U ) = 0,

U = (ρ, ρu, E)T , ρ =

∫
f dv, u =

1

ρ

∫
fv dv.

When ε is not small, seek generalization of Euler using more moments.

Grad 13-moment system is constructed using the moments of
{1,v, (v − u)⊗ (v − u), |v − u|2(v − u)}.
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Machine learning-based moment method

Objective: construct an uniformly accurate (generalized) moment model

1: Learn the Moments through Autoencoder
Find an encoder Ψ and a decoder Φ that recovers the original f from U ,W

W = Ψ(f ) =

∫
wf dv, Φ(U ,W )(v) = h(v;U ,W ).

Minimizew,h E
f∼D
‖f − Φ(Ψ(f ))‖2.

2: Learn the Fluxes and Source Terms in the PDE{
∂tU +∇x · F (U ,W ; ε) = 0,

∂tW +∇x ·G(U ,W ; ε) = R(U ,W ; ε).

We just have to learn F ,G,R from the original kinetic equation using ML.

Jiequn Han, Chao Ma, Zheng Ma and Weinan E, PNAS. (2019)
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ε varies from 10−3 to 10 in the domain; initial profiles are the same as before
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Figure: Profiles of ρ, ρu, E (from left to right) at t = 0, 0.05, 0.1 (from top to bottom)
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Follow-up work

DeePHF, DeePKS, DeePN2, CGSP, DeePCombustion

deterministic control (Kang, Gong, et al (2019))

game theory (Han and Hu (2019), Ruthotto, Osher et al (2020))

Deep Ritz method (E and Yu (2018))
“deep Galerkin method” (really least square, Sirignano and Spiliopoulos (2018))
deep Galerkin method (Zang, Bao (2019))

many applications to chemistry, material science, combustion, non-Newtonian fluid
dynamics, control theory, finance, economics

ML is used to generate new (reliable and interpretable) physical models (say for gas
dynamics, non-Newtonian fluids).

See E, Han and Zhang: Integrating ML with Physics-based Modeling, 2020.
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Other examples

many-body Schrödinger equation

parametric PDEs

solving traditional low-dimensional PDEs (Poisson, Maxwell, Navier-Stokes)

inverse problems

· · · · · ·
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Mathematical theory of machine learning

1. Understanding the mysteries about ML
Why does it work in such high dim?

Why simple gradient descent works?

Relative merits of shallow vs deep networks?

Is over-parametrization good or bad? (cause the optimization problem to be degenerate)

Why does neural network modeling require such extensive parameter tuning?

2. Seeking better formulations of ML
More robust: requires less parameter tuning

More general

Will discuss supervised learning: Approximate a target function using a finite dataset
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Approximation of functions

Approximate by polynomials:

“Universal Approximation Theorem” (Weierstrass): Continuous functions can be
approximated by polynomials.

Taylor’s theorem: Convergence rates depend on the regularity of the target function.

Approximation by piecewise polynomials: (m = number of free parameters)

inf
f∈Hm

‖f − fm‖L2(X) ≤ C0h
α‖f‖Hα(X), h ∼ m−1/d

Sobolev (Besov) norm is the right quantity for the right hand side.

They suffer from CoD: m ∼ ε−d where ε is the error tolerance.

The number of monomials of degree p in dimension d is Cd
p+d
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What should we expect in high dimension?

Example: Monte Carlo methods for integration

I(g) = Ex∼µg(x), Im(g) =
1

m

∑
j

g(xj)

{xj, j ∈ [m]} is i.i.d samples of µ.

E(I(g)− Im(g))2 =
var(g)

m
, var(g) = Ex∼µg2(x)− (Ex∼µg(x))2

The best we can expect for function approximation in high D:

inf
f∈Hm

R(f ) = inf
f∈Hm

‖f − f ∗‖2
L2(dµ) .

‖f ∗‖2
∗

m

What should be the norm ‖ · ‖∗ (associated with the choice of Hm)?
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How can this be true? An illustrative example

Traditional approach for Fourier transform:

f (x) =

∫
Rd
a(ω)ei(ω,x)dω, fm(x) =

1

m

∑
j

a(ωj)e
i(ωj ,x)

{ωj} is a fixed grid, e.g. uniform.

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

“New” approach: Let π be a probability distribution and

f (x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x)

Let {ωj} be an i.i.d. sample of π, fm(x) = 1
m

∑m
j=1 a(ωj)e

i(ωj,x),

E|f (x)− fm(x)|2 = m−1var(f )

fm(x) = 1
m

∑m
j=1 ajσ(ωT

j x) = two-layer neural network with activation function σ(z) = eiz.
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Two-layer neural network model: Barron spaces

E, Ma and Wu (2018, 2019), Bach (2017)

Hm = {fm(x) =
1

m

∑
j

ajσ(wT
j x)}, θ = {(aj,wj), j ∈ [m]}

Consider the function f : X = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = E(a,w)∼ρ[aσ(wTx)], x ∈ X

Ω = R1 × Rd+1, ρ is a probability distribution on Ω.

‖f‖B = inf
ρ∈Pf

(
Eρ[a2‖w‖2

1]
)1/2

where Pf := {ρ : f (x) = Eρ[aσ(wTx)]}.

B = {f ∈ C0 : ‖f‖B <∞}

Related work in Barron (1993), Klusowski and Barron (2016), E and Wojtowytsch (2020)
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Theorem (Direct Approximation Theorem)

‖f − fm‖L2(X) .
‖f‖B√
m

Theorem (Inverse Approximation Theorem)
Let

NC
def
= { 1

m

m∑
k=1

akσ(wT
kx) :

1

m

m∑
k=1

|ak|2‖wk‖2
1 ≤ C2,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ NC such that

fm(x)→ f ∗(x)

for all x ∈ X , then there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
aσ(wTx)ρ∗(da, dw),

for all x ∈ X and ‖f ∗‖B ≤ C.
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Estimation error

Since we can only work with a finite dataset, what happens outside the dataset?

Figure: The Runge phenomenon: f ∗(x) = 1
1+25x2
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Training and testing errors

In practice, we minimize the training error:

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2

but we are interested in the testing error:

R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

H = a set of functions, S = (x1,x2, ...,xn) = dataset. Upto log terms,

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ∼ RadS(H)

where the Rademacher complexity of H with respect to S is defined as

RadS(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.
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Complexity estimates

Theorem (Bach, 2017)

Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

RadS(FQ) ≤ 2Q

√
2 ln(2d)

n

where n = |S|, the size of the dataset S.
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A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =

(
1

m

m∑
k=1

|ak|2‖wk‖2
1

)1/2

Theorem (E, Ma, Wu, 2018)

Assume f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, such that for any δ > 0, if λ ≥ C0,
then with probability at least 1− δ over the choice of training set, we have

R(θ̂n) .
‖f ∗‖2

B
m

+ λ‖f ∗‖B

√
log(2d)

n
+

√
log(1/δ) + log(n)

n
.
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Approximation theory and function spaces for other ML models

random feature model: Reproducing kernel Hilbert space (RKHS)

Residual networks (ResNets): Flow-induced space (E, Ma and Wu (2019))

Multi-layer neural networks: Multi-layer spaces (E and Wojtowytsch (2020))

Up to log terms, we have

R(f̂ ) .
‖f ∗‖2

∗
m

+
‖f ∗‖∗√

n

where m = number of free parameters, n = size of training dataset.
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Better formulation: ML from a continuous viewpoint

Formulate a “nice” continuous problem, then discretize to get concrete
models/algorithms.

For PDEs, “nice” = well-posed.

For calculus of variation problems, “nice” = “convex”, lower semi-continuous.

For ML, “nice” = variational problem has simple landscape.

Key ingredients

representation of functions (as expectations)

formulating the variational problem (as expectations)

optimization, e.g. gradient flows

E, Ma and Wu (2019)
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Function representation

integral-transform based:

f (x; θ) =

∫
Rd
a(w)σ(wTx)π(dw)

=Ew∼πa(w)σ(wTx)

=E(a,w)∼ρaσ(wTx)

=Eu∼ρφ(x,u)

θ = parameters in the model: a(·) or the prob distributions π or ρ

flow-based:

dz

dτ
=Ew∼πτa(w, τ )σ(wTz)

=E(a,w)∼ρτaσ(wTz)

=Eu∼ρτφ(z,u), z(0,x) = x

f (x, θ) = 1Tz(1,x)

θ = {aτ(·)} or {πτ} or {ρτ}
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Optimization: Gradient flows

“Free energy” = R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

f (x) =

∫
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

Follow Halperin and Hohenberg (1977):

a = non-conserved, use “model A” dynamics:

∂a

∂t
= −δR

δa

π = conserved (probability density), use “model B”:

∂π

∂t
+∇ · J = 0

J = πv, v = −∇V, V =
δR
δπ
.
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Discretizing the gradient flows

Discretizing the population risk (into the empirical risk) using data

Discretizing the gradient flow
particle method – the dynamic version of Monte Carlo

smoothed particle method – analog of vortex blob method

spectral method – very effective in low dimensions

We can see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.
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Discretization of the conservative flow for flow-induced
representation

Function representation: f (x; θ) = E(a,w)∼ρaσ(wTx)

∂tρ = ∇(ρ∇V ), V =
δR
δρ

Particle method discretization:

ρ(a,w, t) ∼ 1

m

∑
j

δ(aj(t),wj(t)) =
1

m

∑
j

δuj(t)

gives rise to
duj
dt

= −∇ujI(u1, · · · ,um)

where

I(u1, · · · ,um) = R(fm), uj = (aj,wj), fm(x) =
1

m

∑
j

ajσ(wT
j x)

This is exactly gradient descent for (scaled) two-layer neural networks.
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Why is continuous formulation better? No “phase transition”

Continuous viewpoint (in this case same as mean-field): fm(x) = 1
m

∑
j ajσ(wT

j x)

Conventional NN models: fm(x) =
∑

j ajσ(wT
j x)
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Figure: (Left) continuous viewpoint; (Right) conventional NN models. Target function is a single neuron.

Ma, Wu and E (2020)
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The optimal control problem for flow-induced formulation

In a slightly more general form

dz

dτ
= Eu∼ρτφ(z,u), z(0,x) = x

z = state, ρτ = control at time τ .

The objective : Minimize R over {ρτ}

R({ρτ}) = Ex∼µ(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

where
f (x) = 1Tz(1,x)
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Pontryagin’s maximum principle

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Eu∼µ[pTφ(z,u)].

The solutions of the control problem must satisfy:

ρτ = argmaxρEx[H
(
zt,xτ ,pt,xτ , ρ

)
], ∀τ ∈ [0, 1],

and for each x, (zt,xτ ,pt,xτ ) are defined by the forward/backward equations:

dzt,xτ
dτ

= ∇pH = Eu∼ρτ (·;t)[φ(zt,xτ ,u)]

dpt,xτ
dτ

= −∇zH = Eu∼ρτ (·;t)[∇T
zφ(zt,xτ ,u)pt,xτ ].

f (x) = 1Tz(x, 1)

with the boundary conditions:

zt,x0 = x

pt,x1 = 2(f (x; ρ(·; t))− f ∗(x))1.
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Gradient flow for flow-based models

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Eu∼µ[pTφ(z,u)].

The gradient flow for {ρτ} is given by

∂tρτ(u, t) = ∇ · (ρτ(u, t)∇V (u; ρ)) , ∀τ ∈ [0, 1],

where

V (u; ρ) = Ex[
δH

δρ

(
zt,xτ ,pt,xτ , ρτ(·; t)

)
],

and for each x, (zt,xτ ,pt,xτ ) are defined by the forward/backward equations:

dzt,xτ
dτ

= ∇pH = Eu∼ρτ (·;t)[φ(zt,xτ ,u)]

dpt,xτ
dτ

= −∇zH = Eu∼ρτ (·;t)[∇T
zφ(zt,xτ ,u)pt,xτ ].

with the boundary conditions:

zt,x0 = x

pt,x1 = 2(f (x; ρ(·; t))− f ∗(x))1.
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Discretize the gradient flow

forward Euler for the flow in τ variable, step size 1/L.

particle method for the GD dynamics, M samples in each layer

zt,xl+1 = zt,xl +
1

LM

M∑
j=1

φ(zt,xl ,ujl (t)), l = 0, . . . , L− 1

pt,xl = pt,xl+1 +
1

LM

M∑
j=1

∇zφ(zt,xl+1,u
j
l+1(t))pt,xl+1, l = 0, . . . , L− 1

dujl (t)

dt
= −Ex[∇T

wφ(zt,xl ,ujl (t))p
t,x
l ].

This recovers the GD algorithm (with back-propagation) for the (scaled) ResNet:

zl+1 = zl +
1

LM

M∑
j=1

φ(zl,ul).
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Max principle-based training algorithm

Qianxiao Li, Long Chen, Cheng Tai and Weinan E (2017):

Basic “method of successive approximation” (MSA):

Initialize: θ0 ∈ U

For k = 0, 1, 2, · · · :
Solve

dzkτ
dτ

= ∇pH(zkτ ,p
k
τ , θ

k
τ ), zk0 = V x

Solve
dpkτ
dτ

= −∇zH(zkτ ,p
k
τ , θ

k
τ ), pk1 = 2(f (x; θk)− f ∗(x))1

Set θk+1
τ = argmax θ∈ΘH(zkτ ,p

k
τ , θ), for each τ ∈ [0, 1]

Extended MSA:

H̃(z,p, θ,v, q) := H(z,p, θ)− 1

2
ρ‖v − f (z, θ)‖2 − 1

2
ρ‖q +∇zH(z,p, θ)‖2.
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Comparison between GD and maximum principle

Maximum principle:

ρτ = argmaxρEx[H
(
zt,xτ ,pt,xτ , ρ

)
], ∀τ ∈ [0, 1],

GD:

∂tρτ(u, t) = ∇ ·
(
ρτ(u, t)∇Ex[

δH

δρ

(
zt,xτ ,pt,xτ , ρτ(u; t)

)
]

)
, ∀τ ∈ [0, 1],

Hybrid:

Introducing a different time scale for optimization step: One time forward/backward
propagation every k steps of optimization.

k = 1, usual GD or SGD

k =∞, maximum principle
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What have we really learned from ML?

Representation of functions as expectations:

integral-transform based:
f (x; θ) = E(a,w)∼ρaσ(wTx)

f (x) = EθL∼πLa
(L)
θL
σ(EθL−1∼πL−1

. . . σ(Eθ1∼π1a
1
θ2,θ1

σ(a0
θ1
· x)) . . . )

flow-based:

dz

dτ
=E(a,w)∼ρτaσ(wTz), z(0,x) = x

f (x, θ) =1Tz(1,x)

and then discretize using particle, spectral or other numerical methods.
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Concluding remarks

ML has changed and will continue to change the way we deal with functions, and this
will have a very significant impact in computational mathematics.

A reasonable mathematical picture for ML is emerging, from the perspective of
numerical analysis.

Review articles (can be found on my webpage https://web.math.princeton.edu/ weinan ):

Towards a mathematical understanding of machine learning: What is known and what is
not (will appear soon)

Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine
learning

Integrating machine learning with physics-based modeling
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