# Soliton collision for the nonintegrable gKdV equations 

Yvan Martel ${ }^{(1)}$ and Frank Merle ${ }^{(2)}$<br>(1) Université de Versailles Saint-Quentin-en-Yvelines, France<br>(2) Université de Cergy-Pontoise, IHES and CNRS, France


#### Abstract

In this talk, we are concerned with the subcritical gKdV equations $$
\begin{equation*} \partial_{t} u+\partial_{x}\left(\partial_{x}^{2} u+u^{p}\right)=0 \quad t, x \in \mathbf{R} \tag{1} \end{equation*}
$$


for $p=2,3$ and 4 . We mainly focus on the nonintegrable case $p=4$. Equation (1) is known to have special solutions of the type $u(t, x)=Q_{c_{0}}\left(x-x_{0}-c_{0} t\right)$, called solitons. The general problem is the following: one knows the existence of solutions of the equation which behave as $t \rightarrow-\infty$ like

$$
\begin{equation*}
u(t, x)=Q_{c_{1}}\left(x-x_{1}-c_{1} t\right)+Q_{c_{2}}\left(x-x_{2}-c_{2} t\right)+\eta(t, x) \tag{2}
\end{equation*}
$$

where $c_{1}>c_{2}$ and $\eta(t)$ is a dispersion term small in the energy space $H^{1}$ with respect to $Q_{c_{1}}, Q_{c_{2}}$. The two solitons $Q_{c_{1}}$ and $Q_{c_{2}}$ have collide at some time $t_{0}$. Can one understand the collision and determine what happens after the collision? In nonlinear analysis, except for some completely integrable equations, these questions are completely open.

We introduce a new framework to understand these problems for (1) in the case where $c_{2} \ll c_{1}$ and $\|\eta(t)\|_{H^{1}} \ll\left\|Q_{c_{2}}\right\|_{H^{1}}$. First, this approach allows us to describe for all time solutions satisfying (2) for $t$ close to $-\infty$. In particular, we prove that the two solitons survive the collision up to a correction of lower order, i.e. for all $t$ large, we have

$$
\begin{equation*}
u(t, x)=Q_{\tilde{c}_{1}}\left(x-y_{1}(t)\right)+Q_{\tilde{c}_{2}}\left(x-y_{2}(t)\right)+\tilde{\eta}(t, x) \tag{3}
\end{equation*}
$$

where $\tilde{c}_{1} \sim c_{1}, \tilde{c}_{2} \sim c_{2}$ and $\|\tilde{\eta}(t)\|_{H^{1}} \ll\left\|Q_{c_{2}}\right\|_{H^{1}}$. From an explicit decomposition in the interaction region, we can describe precisely the collision. For $p=2$, 3 , we recover classical results at the main orders. For $p=4$, this description is completely new.

Second, our analysis in the nonintegrable case $p=4$ proves that no pure 2 -soliton solution exists in this regime $\left(c_{2} \ll c_{1}\right)$. This is clearly in contrast with the integrable case for which explicit multi-soliton solutions exist.

Nevertheless, we exhibit new exceptional solutions for $p=4$ which are natural extensions in the nonintegrable case of the multi-solitons.

