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Chapter 1

Topological
preliminaries

In this chapter we collect some basic facts, constructions and examples of
three-manifolds, and knots and links in them. In Section 1.1 we discuss
handlebodies and Morse functions. A short discussion about three-manifolds
is given in Section 1.2, and in Section 1.3 we discuss knots and links in S3 ,
with special attention to their Alexander polynomials. In Section 1.4 we
introduce Euler structures on three-manifolds. These structures will play a
fundamental role in Heegaard Floer homology.

1.1. Handle decompositions and Morse theory

We consider smooth, connected, oriented manifolds possibly with boundary.
Unless otherwise stated, these manifolds will also be compact.

Handle decompositions. Handle decompositions are convenient ways to
present and study smooth manifolds. In the following the n-dimensional
closed disk {x ∈ Rn | ‖x‖ ≤ 1} will be denoted by Dn ; its boundary, the
(n− 1)-dimensional sphere is Sn−1 = {x ∈ Rn | ‖x‖ = 1} .

Definition 1.1.1. Suppose that X is a smooth n-dimensional manifold
with boundary ∂X . For 0 ≤ k ≤ n, an n-dimensional k-handle h is a
copy of Dk×Dn−k , attached to the boundary of X along (∂Dk)×Dn−k by
a smooth embedding ϕ : (∂Dk)×Dn−k → ∂X . The manifold Xh = X ∪ϕ h
is the result of the handle attachment, which is a smooth n-manifold with
boundary (after rounding corners).
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The disk Dk×{0} is called the core of the handle, {0}×Dn−k is the cocore,
ϕ is the attaching map, (∂Dk) ×Dn−k (or its image ϕ((∂Dk) ×Dn−k)) is
the attaching region, (∂Dk)×{0} (or its image) is the attaching sphere and
{0}× (∂Dn−k) is the belt sphere of the handle h . The integer k is the index
of the handle.

Smoothly isotopic attaching maps result in diffeomorphic manifolds. More-
over, the attaching map ϕ : (∂Dk)×Dn−k → ∂X is determined up to isotopy
by an embedding ϕ0 : (∂Dk) × 0 → ∂X together with an identification of
the normal bundle of ϕ0((∂Dk) × 0) with (∂Dk) × Rn−k , i.e. a (normal)
framing. Since the difference of two framings is a map Sk−1 → GL(n− k),
and GL(n− k) is homotopy equivalent to O(n− k), the set of framings can
be parametrized by homotopy classes of maps from Sk−1 to O(n− k).

By the above reasoning, in the oriented case, the framing of a 0-, 1-, (n−1)-
and an n-handle is unique. To specify an n-dimensional 2-handle attach-
ment we need to specify a knot in ∂X , together with a framing. The set of
framings in this case is parametrized by π1(SO(n− 2)), which is the trivial
group for n = 3, is isomorphic to Z for n = 4, and is Z/2Z for n ≥ 5.

Definition 1.1.2. Let X be a compact n-dimensional manifold with bound-
ary ∂X , and suppose that the boundary is decomposed as a disjoint union
∂X = ∂+X∪∂−X of two compact submanifolds. Suppose that X is oriented,
and orient ∂±X so that ∂X = ∂+X ∪ −∂−X in the boundary orientation
(where −∂−X means the manifold ∂−X with the reversed orientation). A
handle decomposition of X relative to ∂−X is a diffeomorphism of X
with a manifold we get from [0, 1]×∂−X by attaching handles to {1}×∂−X .
A manifold X equipped with a handle decomposition is called a relative
handlebody , or if ∂−X = ∅, simply a handlebody .

Let φ0 : Sk−1 → Y n−1 be an embedding with trivial normal bundle, together
with a framing λ . Remove a neighborhood of φ0(Sk−1), identified via the
framing with Sk−1×Dn−k and glue back in Dk×Sn−k−1 using the framing
on the boundary. The resulting manifold Yλ(φ0) is called the λ-framed
surgery on Y along φ0 . Clearly, attaching an n-dimensional k -handle to
Xn changes its boundary ∂X by such a surgery.

For example, if Y1 and Y2 are two oriented m-manifolds equipped with
points yi ∈ Yi , then the connected sum Y1#Y2 of Y1 and Y2 is the result
of framed surgery along the embedded 0-sphere {y1, y2} ⊂ Y1 ∪ Y2 .

Morse functions. Morse functions and related constructions will play a
crucial role in our subsequent discussions. We recall here the basics of Morse
theory, and refer the reader to [76] for a thorough treatment.
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Suppose that f : X → R is a smooth function on X . The point p ∈ X is a
critical point of f if df vanishes at p . If p is a critical point then f(p) is
called a critical value; c ∈ R is a regular value if f−1(c) does not contain
any critical points. The critical point p is non-degenerate if in some local

coordinate chart around p , the Hessian matrix ( ∂
2f(p)

∂xi∂xj
) is non-degenerate.

The Hessian has the following coordinate-free description. Fix a Riemannian
metric g on X and consider the map Hessf : TpX → TpX at a critical point
p defined by

(1.1) g(Hessf (ξ), η) = ξ(η̃f),

where ξ, η ∈ TpX and η̃ is a vector field extending η to a neighbourhood
of p . (Here, η̃f denotes the smooth function defined as the directional
derivative of f in the direction specified by η̃ .)

Note that this definition doesn’t depend on an extension η̃ of η :

Exercise 1.1.3. (a) Let p be a critical point of a function f , and let ξp, ηp ∈
TpX . If ξ̃ and η̃ are any two vector fields defined near p that extend ξp
and ηp respectively, show that ξp(η̃f) = ηp(ξ̃f). Conclude that this value is

independent of the extensions ξ̃ and η̃ .

(b) Suppose that X = Rn , and consider the Riemannian metric for which
the coordinate vector fields { ∂

∂xi
}ni=1 form an orthonormal basis at each tan-

gent space. Using the identification TpX ∼= Rn induced by this basis, show
that the matrix representing the linear transformation Hessf : Rn → Rn is

the matrix ( ∂
2f(p)

∂xi∂xj
).

Definition 1.1.4. A smooth function f : X → R is a Morse function if
each critical point of f is non-degenerate.

Morse functions exist by the following result:

Proposition 1.1.5. [76, Corollary 6.8] On a compact, smooth n-manifold
X , any continuous function can be approximated by a Morse function. �

Suppose that p is a non-degenerate critical point of f . The index λ(p) of
p is the maximal dimension of a subspace of TpX on which the Hessian is
negative definite. According to the Morse lemma [76], an index-k critical
point p of a Morse function f admits a coordinate chart on which

f = f(p)− x2
1 − x2

2 − · · · − x2
k + x2

k+1 + · · ·+ x2
n.

It follows that critical points of Morse functions are isolated.
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A Morse function f on a smooth, closed, n-manifold can be used to give
a handle decomposition of X . The main idea is to use sublevel and level
sets: Let Xt denote f−1((−∞, t]) and Yt = f−1(t). Since X is compact,
Xt is empty for sufficiently large negative t , while Xt = X for large enough
positive t . Now we can study X by understanding how Xt changes as t
passes through a critical value. Suppose that t1 < t2 are two points that are
both regular values. Then the manifold-with-boundary Xt2 can be given by
attaching a cobordism to Xt1 , and this cobordism depends on the critical
points as follows:

Theorem 1.1.6. ([76]) Let f be a Morse function on the smooth closed
n-dimensional manifold X , and assume that t1 < t2 ∈ R are two regular
values. If f−1([t1, t2]) contains no critical point, then Xt1 is diffeomorphic
to Xt2 . If f−1([t1, t2]) contains a unique critical point p of index k then
Xt2 can be constructed from Xt1 by attaching a smooth n-dimensional k -
handle. More generally, if f−1([t1, t2]) contains m critical points of index
k , all of which have the same value, then Xt2 is constructed from Xt1 by
attaching m disjoint, smooth, n-dimensional k -handles. �

The proof of Theorem 1.1.6 (as given in [76, Chapter (I.3)]) uses the concept
of gradient vector fields and flows. Here we give an idea of the proof. Choose

a metric g on X and consider the gradient vector field ~∇f , specified by

g(~∇f, w) = df(w)

for all w ∈ TX . The vector field −~∇f induces the downward gradient flow,
i.e. a one-parameter family of diffeomorphisms {φt : X → X} with φ0 =IdX
and dφt

dt = (φt)∗(−~∇f). Similarly ~∇f induces the upward gradient flow.

Suppose first that f−1([t1, t2]) contains no critical points. In this case,
starting at a point of Yt2 , we can follow the (downward) gradient flow and
end up at a point in Yt1 . Since the process can be reversed using the upward
gradient flow, we get a diffeomorphism between Yt1 and Yt2 . Indeed, we get
that f−1([t1, t2]) is diffeomorphic to the product Yt1 × [0, 1] and hence Xt1

is diffeomorphic to Xt2 .

When [t1, t2] contains a unique critical value corresponding to the critical
point p of index k , then there is a subset S2 ⊂ Yt2 that flows into the
critical point, meaning that the trajectory of the gradient flow converges to
the critical point p . Similarly there is a subset S1 ⊂ Yt1 that flows to p
under the upward gradient flow. The local behavior of the Morse function
f at the critical point p shows that S1 and S2 are smoothly embedded
spheres with dimensions k − 1 and n − k − 1 respectively, and the points
that flow into p under the upward flow form a disk D1 of dimension k
(with boundary S1 ) and the points which flow to p under the downward



1.2. Three-manifolds 7

flow form a disk D2 of dimension n− k (with boundary S2 ). Indeed, these
disks are the core and cocore disks of a k -handle and the spheres S1 and
S2 are the attaching and belt spheres of the handle. Consequently Xt2 is
constructed from Xt1 by attaching a k -handle. The case of more critical
points of index k follows similarly. Consequently, a Morse function induces
a handle decomposition for any closed, oriented, smooth manifold X .

The set of points of the manifold which flow to a critical point p under the
upward flow is called the ascending manifold A(p), while the set of points
flowing to p under the downward flow is the descending manifold D(p) at
p .

By Proposition 1.1.5 and Theorem 1.1.6, any smooth, compact n-manifold
admits a handle decomposition. In fact, we can arrange for the handles to
be added in increasing order of index, according to the next theorem.

Definition 1.1.7. The Morse function f on a smooth n-manifold is self-
indexing if for all critical points p, f(p) = λ(p).

Theorem 1.1.8. ([78]) Let X be a smooth, closed, connected n-dimensional
manifold. Then X admits a self-indexing Morse function with a unique local
minimum and a unique local maximum. �

Exercise 1.1.9. (a) Embed the torus in R3 so that the x coordinate is a
self-indexing Morse function.

(b) Consider the sphere S2n+1 ⊂ Cn+1 consisting of (z0, . . . , zn) with
n∑
i=0

|zi|2 = 1.

The quotient of this sphere by the natural S1 -action gives CPn . Show that
the function

∑n
j=1 j|zj |2 is a self-indexing Morse function on CPn .

(c) Show that a closed, smooth n-manifold admits a CW decomposition.

1.2. Three-manifolds

We give now some basic examples and constructions of three-manifolds.
According to [82] any topological three-manifold Y admits a unique (up to
diffeomorphism) smooth structure, and any homeomorphism between topo-
logical three-manifolds can be isotoped to a diffeomorphism; hence without
loss of generality we can assume that Y is a smooth three-manifold. Unless
otherwise stated, in the following we will always assume that Y is compact
and oriented with possibly non-empty boundary.

When studying three-manifolds, it will be convenient to consider their sub-
manifolds. An m-component link L in Y is a collection of m disjoint
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smoothly embedded simple closed curves. A 1-component link K is called a
knot. The links L1, L2 are equivalent if there is an ambient isotopy taking L1

to L2 ; i.e. a map F : Y × [0, 1]→ Y with the properties that Ft = F |Y×{t}
is a diffeomorphism for all t , F0 = IdY , and F1(L1) = L2 . The equivalence

class of a link is called the link type. An oriented link, denoted ~L , is a
link equipped with orientations on each component. The above notion of

isotopy adapts readily to the oriented context. For the oriented knot ~K the

same knot with the reversed orientation is called the reverse of ~K and is
denoted by r( ~K). There are oriented knots that are not (oriented) isotopic
to their reverses; a family of such examples was found by Trotter [136]. For
example, three-stranded pretzel knots P (p, q, r) with p, q, r odd, all distinct
and greater than 1 in absolute value have this property.

1.2.1. Some basic three-manifolds. A fundamental three-dimensional
closed manifold is the three-dimensional sphere S3 = {x ∈ R4 | ||x|| = 1} .
Other simple examples of closed, oriented three-manifolds are given by prod-
ucts of lower dimensional manifolds: S1 × S2 , the three-dimensional torus
T 3 = S1 × S1 × S1 , and S1 × Σg , where Σg denotes an oriented, closed
surface of genus g . More generally we can consider S1 -bundles over an
orientable surface Σg : such a three-manifold Yg,k is classified by the genus
g of the base surface and by the first Chern number k of the complex line
bundle associated to the S1 -bundle.

In a different direction, the product S1 × Σg can be generalized by consid-
ering surface bundles over S1 . Such a bundle can be constructed from an
orientation-preserving diffeomorphism φ : Σg → Σg , by taking the product
[0, 1]× Σg and identifying (1, x) with (0, φ(x)), for all x ∈ Σg . The result-
ing three-manifold is called the mapping torus of φ . In turn, every surface
bundle over S1 can be constructed in this way; the isotopy class of φ is
called the monodromy of the fibration. The mapping class group in genus
g , denoted Γg , is the group of orientation-preserving self-diffeomorphisms
of Σg , modulo isotopy; and multiplication corresponds to composition of
maps. Indeed, the monodromy of a surface bundle depends on the chosen
identification of the fiber with Σg , hence the monodromy is well-defined
only up to conjugation in the group Γg .

Another family of three-manifolds is given as follows. Fix a pair of relatively
prime integers p and q , with 1 ≤ q < p . Think of S3 as the subset of C2

specified by {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} . The map

(1.2) (z1, z2) 7→ (e
2πi
p z1, e

2πiq
p z2)

generates an action of Z/pZ on S3 . The quotient of S3 by this action is
the lens space L(p, q).
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Exercise 1.2.1. Show that all non-trivial circle bundles over S2 are lens
spaces. Which lens spaces can be realized in this manner?

Lens spaces and circle bundles over surfaces have the following common
generalization. A Seifert fibered three-manifold is a closed three-manifold Y
together with a decomposition into a disjoint union of circles, called fibers,
each of which has a closed tubular neighbourhood U with the following
structure. Either U decomposes as U = D2 × S1 , so that the fibers cor-
respond to the circles x × S1 (these fibers are called regular fibers); or U
has the following structure. Fix relatively prime, positive integers p and
q with p > 1, and consider the product D2 × S1 , equipped with the free
Z/pZ action (w, z) 7→ (ηw, ηqz), where η = e2πi/p . The quotient space
Vp,q = (D2 × S1)/(Z/pZ) is a manifold (also diffeomorphic to D2 × S1 ),
and it has an action by S1 , rotating on the second factor. The local neigh-
borhood U is identified with Vp,q so that the fibers in U correspond to the
S1 -orbits in Vp,q . The fiber corresponding to w = 0 is called a singular
fiber, and the pair (p, q) is called its Seifert invariant of the singular fiber.
Seifert fibered spaces are classified; see [96].

Example 1.2.2. Any circle bundle over a two-manifold can be viewed as a
Seifert fibered space with no singular fibers. Seifert fibered spaces over the
sphere S2 with at most two singular fibers are either lens spaces or S1×S2 ;
in fact, all lens spaces can be described as Seifert fibered spaces with one
singular fiber.

Example 1.2.3. If Y is any three-manifold with a circle action, with the
property that each orbit has only finite stabilizers, then Y is a Seifert fibered
space. Indeed, by [96, Theorem 2, page 88] an oriented Seifert fibered
three-manifold admits such a cirle action once the space of fibers (a two-
dimensional orbifold) is orientable.

Exercise 1.2.4. (a) For p, q relatively prime, give a diffeomorphism be-
tween Vp,q and D2 × S1 .

(b) Let φ : T 2 → T 2 be the map φ(x, y) = (−x,−y), where we view (x, y) ∈
(R ⊕ R)/(Z ⊕ Z). Show that the mapping torus of φ is a Seifert fibered
space. How many singular fibers does it have, and what are their Seifert
invariants?

(c) Let φ : Σg → Σg be an orientation preserving map with φm = IdΣg for
some values of m and g . Construct a circle action on the mapping torus
Y of φ, and conclude that Y is a Seifert fibered space. The map φ induces
a Z/mZ action on Σg . Give a correspondence between the orbits of this
action and the fibers of the Seifert fibration. When does an orbit correspond
to a singular fiber?
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Interesting examples of Seifert fibered spaces occur when considering the
complex algebraic equation

(1.3) zp1 + zq2 + zr3 = 0

in C3 , for positive integers p , q , and r . Equation (1.3) then defines a
(complex) codimension-one subset Xp,q,r ⊂ C3 , which is a smooth four-
manifold away from the origin. If Sε denotes the (five-dimensional) sphere
of radius ε > 0 in C3 , then the intersection Xp,q,r ∩ Sε is a smooth three-
manifold.

Exercise 1.2.5. Prove that Xp,q,r is smooth away from the origin. Show
that the diffeomorphism type of Xp,q,r ∩ Sε is independent of the choice of
ε > 0.

The intersection Xp,q,r ∩ Sε is called a Brieskorn manifold , and it is de-
noted Σ(p, q, r). Brieskorn manifolds naturally inherit the structure of a
Seifert fibered space. When p, q, r are pairwise relatively prime integers,
the Brieskorn manifold is called a Brieskorn sphere, because in this case
H1(Σ(p, q, r);Z) = 0 = H1(S3;Z).

Exercise 1.2.6. (a) Consider the Brieskorn sphere Σ(p, q, r), and let the
subspaces Γi for i = 1, 2, 3 be the intersections of Σ(p, q, r) with the hy-
perplanes {zi = 0}. Show that Γi are smoothly embedded circles inside
Σ(p, q, r).

(b) Construct a circle action on Σ(p, q, r) that is free away from the three
circles Γ1 , Γ2 , and Γ3 , each of which is an orbit with finite stabilizers.
Conclude that a Brieskorn sphere is a Seifert fibered three-manifold with
three singular fibers. What are the Seifert invariants of the three singular
fibers?

(c) Show that if p, q, r are pairwise relatively prime, then, as stated above,
H1(Σ(p, q, r);Z) = 0.

(d) Show that if q and r are relatively prime, then Σ(1, q, r) is diffeomor-
phic to S3 .

For a similar, lower-dimensional example, consider the complex algebraic
equation zp1 + zq2 = 0 in C2 , and intersect the resulting (complex) curve
with the unit sphere S3 . When p and q are relatively prime, this gives a
knot in S3 called the torus knot Tp,q ; when gcd(p, q) = k , we obtain the

k -component torus link ~Tp,q , oriented as the boundary of the complex curve
zp1 + zq2 = 0 in D4 .

Exercise 1.2.7. Show that Σ(2, 3, 5)\Γ3 is diffeomorphic to the complement
of the left-handed trefoil knot T = T2,−3 in S3 .
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The following terminology will be used throughout:

Definition 1.2.8. A homology three-sphere is a closed oriented con-
nected three-manifold Y for which H∗(Y ;Z) ∼= H∗(S

3;Z). Similarly a
rational homology three-sphere is a closed oriented connected three-
manifold Y for which H∗(Y ;Q) ∼= H∗(S

3;Q).

It follows from Poincare duality that a closed, oriented, connected, three-
dimensional manifold Y is a homology three-sphere if and only if H1(Y,Z) =
0, and it is a rational homology three-sphere if and only if its first Betti
number b1(Y ) vanishes. Note that all the lens spaces are rational homology
spheres, while Brieskorn spheres are examples for homology three-spheres.

1.2.2. Branched covers of three-manifolds. New three-manifolds can
be constructed out of old ones, using the following notion:

Definition 1.2.9. The smooth map f : X → Y between compact n-di-
mensional manifolds is a smooth branched covering if there exists an
(n − 2)-dimensional submanifold Bf ⊂ Y , called the branching locus of
f , such that the restriction of f to X \ f−1(Bf ) is an ordinary covering of
some finite degree d, and for each p ∈ f−1(Bf ) there is a positive integer
m, a coordinate chart Up ∼= C × Rn−2 around p ∈ X , and a coordinate
chart Vp ∼= C× Rn−2 around f(p) ∈ Y , with respect to which f is modeled
on the map C× Rn−2 → C× Rn−2 given by (z, x) 7→ (zm, x); i.e. we have
the following commutative diagram:

p ∈ Up C× Rn−2

f(p) ∈ Vp C× Rn−2

φp

ψp

f (z, x) 7→ (zm, x)

‘

The integer m is called the branching index at p.

Given a link L ⊂ Y and a homomorphism φ from π1(Y \L) to the symmetric
group on d letters, there is an associated branched d-fold cover of Y , whose
branch locus is L . The homomorphism φ specifies the d-sheeted covering
space away from the branch locus.

If Y = S3 and d = 2, there is a canonical representation of S3 \ L to
Z/2Z taking each meridian to the non-trivial element. Thus, in this case
the branch locus alone specifies the branched cover, which we denote Σ(L).

More generally, consider an oriented link ~L equipped with the canonical map
π1(S3\L)→ Z/dZ , taking each oriented meridian to the preferred generator
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of Z/dZ . Thinking of Z/dZ as a subgroup of the symmetric group on d
letters, we have specified a d-fold branched cover of S3 along L , called the

cyclic branched d-fold cover of S3 along ~L .

Exercise 1.2.10. Verify that the Brieskorn manifold Σ(p, q, r) is the p-fold
cyclic branched cover of S3 whose branch locus is the torus link Tq,r .

Not every three-manifold can be presented as a cyclic branched cover of S3 .
On the other hand, by a theorem of Montesinos [83] and Hilden [49] every
closed, oriented three-manifold can be given as the triple branched cover of
S3 along a knot. Interestingly, there are knots K ⊂ S3 (called universal
knots) for which every three-manifold can be presented as some branched
cover of S3 along K . Indeed, the figure-8 knot is such a universal knot [50].

1.2.3. Surgeries. A further useful construction of three-manifolds is given
by Dehn filling. To define it, let M be a three-manifold with torus boundary
and fix a homologically non-trivial, embedded curve γ ⊂ ∂M . Attaching a
three-dimensional 2-handle to M along γ , and a 3-handle to the resulting
S2 (or equivalently, gluing a copy of D2 × S1 to M along ∂M so that
(∂D2) × {p} glues to γ ), we obtain a closed three-manifold Mγ called the
Dehn filling of M along γ .

Let K be a knot in the three-manifold Y . The complement of an open
tubular neighborhood of K in Y is a three-manifold M with ∂M ∼= T 2 .
A framing φ on K can be thought of as a normal vector field to K . The
normal push-off of K gives a closed curve γ in ∂M , which is uniquely
determined by the framing, up to isotopy. The three-manifold Yγ(K) is the
Dehn filling of M = Y \ ν(K) along this curve. Moreover, an orientation

on K specifies an identification f : Z ⊕ Z
∼=−→ H1(∂M ;Z) as follows: Let

λ ⊂ ∂M be a push-off of K specified by the framing, and let µ ⊂ ∂M be
the boundary of a normal disk to K , oriented so that oriented intersection
number µ · λ = −1 in ∂M . (The intersection number is computed using
the orientation on T 2 = ∂M , which is opposite to the one it inherits as
the boundary of a closed tubular neighborhood of K .) When p and q are
relatively prime integers, the homology class pµ+ qλ can be represented by
an embedded, closed, connected curve γp,q on ∂M , and the Dehn filling of
M along this curve is called the p/q Dehn surgery along the framed knot,
and is denoted by Yp/q(K,φ). This notation is justified by the observation
that Yp/q(K,φ) = Y−p/−q(K,φ). When q = ±1 this operation is called an
integral Dehn-surgery. Another special case is when q = 0: since in this
case f(1, 0) = µ , we have that Y1/0(K,φ) = Y∞(K,φ) = Y .

Exercise 1.2.11. Let X be a four-manifold with boundary ∂X = Y . Show
that if we add a four-dimensional 2-handle to X then the new boundary is
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Figure 1.1. The Borromean rings.

given by an integral Dehn-surgery on Y , where the knot K ⊂ Y is given
by the attaching sphere of the 2-handle.

Definition 1.2.12. When Y is an integral homology sphere, there is a
canonical framing for K , called the Seifert framing, where λ generates the
kernel of the map

i∗ : H1(∂(Y \ ν(K));Z) −→ H1(Y \ ν(K);Z) ∼= Z.

The name comes from the fact that a curve representing λ can be chosen
to lie on a Seifert surface of K .

Since H1(Y \ν(K);Z) = Z is generated by i∗(µ), it follows from the Mayer-
Vietoris sequence that H1(Y0(K);Z) ∼= Z and H1(Yp/q(K);Z) ∼= Z/pZ for
p 6= 0.

Dehn surgery naturally generalizes from framed knots to framed links, where
we fix a framing for each component of the link. Whereas not all closed,
oriented three-manifolds can be realized as Dehn surgery on a knot, they
can be realized as Dehn surgeries on links:

Theorem 1.2.13. (Lickorish, Wallace [66, 143]) Every connected, closed,
oriented three-manifold can be obtained by surgery along a link in S3 , where
all surgery coefficients can be assumed to be integers. �

Exercise 1.2.14. (a) Let U denote the unknot in S3 . Show that S3
1(U) is

diffeomorphic to S3 , and S3
0(U) is diffeomorphic to S1 × S2 .

(b) Given non-zero, relatively prime integers p and q , show that S3
p/q(U) ∼=

−L(p, q).

(c) Show that 0-surgery on each component of the Borromean rings (given
in Figure 1.1) provides the three-dimensional torus T 3 .

(d) Show that (−1)-surgery along the right-handed trefoil T2,3 is diffeomor-
phic to Σ(2, 3, 7).
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...

a1 a2

e0

an

Figure 1.2. Surgery diagram for Seifert fibered three-
manifolds. We assume that e0 ∈ Z and a1, . . . , an ∈ Q .

+ −

Figure 1.3. Signs of a crossing. The oriented arcs on the left show
a positive crossing, while on the right a negative crossing.

(e) Show that S3
−1(T ) with T = T2,−3 (the left-handed trefoil knot) is dif-

feomorphic to Σ(2, 3, 5).

(f) Verify that the three-manifolds Y described by surgery diagrams of the
form shown in Figure 1.2 are all Seifert fibered three-manifolds.

(g) Show that T 3 cannot be constructed from S3 by performing Dehn surgery
along a knot.

1.3. Knots and links in S3

In this section we turn to the study of knots and links in S3 , concentrating
on those aspects of this rich theory that are relevant to our subsequent
discussions. For a more thorough treatment, the reader is referred to [14,
67, 118].

Let L be a link R3 and consider the orthogonal projection to the (x, y)
plane. By isotopying L into general position we can arrange for the projec-
tion restricted to L to be an immersion with finitely many double points.
The isotopy class of the link can be reconstructed from the immersed curve,
equipped with the local information at each double point, specifying which
of the two strands at the crossing is higher. This local information is picto-
rially represented by interrupting the lower strand at the crossing. We will
call the immersed curve in the plane, together with this local information,
a link projection (or knot projection, if the link is a knot). An orientation
of the link also orients its projection, and signs can be associated to the
crossings, following the conventions of Figure 1.3.
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R3

R2R1R1

Figure 1.4. The Reidemeister moves R1, R2, R3 .

The local modifications of a link projection shown in Figure 1.4 are called the
Reidemeister moves R1, R2 and R3 . (The figures indicate changes within a
small disk, while the rest of the projection remains unchanged.)

Theorem 1.3.1. [115] The link projections P1 and P2 correspond to iso-
topic links if and only if these projections can be connected by a finite se-
quence of Reidemeister moves, their inverses, and orientation-preserving
diffeomorphisms of the plane. �

It follows that any quantity associated to a link projections that is invariant
under the three Reidemeister moves is in fact a link invariant.

The Alexander polynomial. The Alexander polynomial of a knot K ⊂
S3 is an integral Laurent polynomial ∆K(t) ∈ Z[t, t−1] , depending only on
the knot type of K .

One definition of the Alexander polynomial [16] can be given as follows. Let
X = S3 \K . Since H1(X;Z) ∼= Z , there is a naturally associated normal

covering X̃ → X , whose automorphism group is identified with Z . Thus,

the homology H1(X̃;Z) = M inherits an action by the group-ring of Z ,
which can be thought of as the ring of Laurent polynomials in one variable
t : Z[Z] ∼= Z[t, t−1] . There is a presentation of the Z[t, t−1]-module M as

Rm
A→ Rn →M → 0,

where A is an m × n matrix over R = Z[t, t−1] . The greatest common
divisor of the determinants of the (n − 1) × (n − 1) minors of A is, by
definition, the Alexander polynomial ∆K(t), up to a multiple of ±tk . To



16 1. Topological preliminaries

~L−~L+ ~L0

Figure 1.5. The diagrams in the small disk for the skein relation.

pin down this indeterminacy, we require further that ∆K(t) = ∆K(t−1) (to
remove the indeterminacy in the t-power) and ∆K(1) = 1 (to pin down the
sign). The fact that ∆K has a representative with these properties can be
seen as a consequence of Poincaré duality [118, Corollary 7,p. 207].

For example, for the unknot U we have X = S1 ×D2 , X̃ = R×D2 , hence
M = 0 and A = Id. This implies that ∆U (t) = 1.

The Alexander polynomial has a natural generalization for oriented links ~L ,
denoted ∆~L(t) ∈ Z[t1/2, t−1/2] . This generalization satisfies a skein relation

which we recall presently. Let ~L+ , ~L− , and ~L0 be three oriented links that
differ in a single crossing; more precisely, they admit oriented link projections
P+ , P− , and P 0 that are identical outside of a small disk, in which they
are as shown in Figure 1.5. Then, the Alexander polynomials of these three
links are related by the skein relation

(1.4) ∆~L+(t)−∆~L−(t) = (t
1
2 − t−

1
2 )∆~L0(t).

Exercise 1.3.2. Show that if ~L is a split link (that is, it admits a discon-
nected projection), then ∆~L(t) = 0.

Conway has shown that the skein relation gives an algorithm for computing
the Alexander polynomial of an arbitrary link, bearing in mind that ∆U (t) =
1 for the unknot U .

Recall that any knot K ⊂ S3 bounds an oriented, connected, compact
surface Σ ⊂ S3 ; such a surface is called a Seifert surface for K , see [67].
The minimal genus of a Seifert surface for K is the Seifert genus of K ,
denoted by g3(K).

A Seifert surface allows us to define the Alexander polynomial in more geo-
metric terms: for a Seifert surface Σ of K we define the Seifert form S(x, y)
on H1(Σ;Z) by taking the linking number of a geometric representative of
x and of the positive normal push-off y+ of y ∈ H1(Σ;Z) (where in the
push-off we use the orientation of Σ to determine the positive normal direc-
tion). By fixing a basis of H1(Σ;Z), S can be described by a matrix, which
we also denote by S . Then the symmetrized Alexander polynomial can be



1.3. Knots and links in S3 17

given as

∆K(t) = det(t−
1
2S − t

1
2ST ).

We say that the knot K is fibered if there is a locally trivial fibration map
ϕ : S3 \K → S1 so that the closure of a fiber of ϕ is a Seifert surface of K .
For example, the torus knots Tp,q are fibered knots.

The main properties of the Alexander polynomial relevant in our future
discussions are summarized:

Theorem 1.3.3. Suppose that K ⊂ S3 is a knot with Alexander polynomial
∆K(t). Then

(A-1) ∆K(t) = ∆K(t−1), that is, ∆K is symmetric, hence can be written
as

∆K(t) = a0 +
d∑
i=1

ai(t
i + t−i)

with ad 6= 0. This d is called the degree of ∆K .

(A-2) For the degree d of ∆K we have d ≤ g3(K), where g3(K) is the
Seifert genus of K .

(A-3) ∆K(1) = 1.

(A-4) If K is a fibered knot, then the leading coefficient ad of ∆K(t) is
equal to ±1.

Properties (A-1)-(A-3) are proved in [67, Chapter 6]; Property (A-4) is
in [118, Chapter 10]

We note that there is a class of knots for which the Alexander polynomial
carries precise topological information. A knot is called alternating if it ad-
mits a diagram in which the crossing alternate as over- and under-crossings
as we traverse through the knot. (See [40, 55] for a more intrinsic charac-
terization of these knots.)

Theorem 1.3.4. Suppose that K is an alternating knot. Then the degree
d of ∆K(t) is equal to the Seifert genus g3(K) of K . In particular, if K
is alternating and ∆K(t) ≡ 1 then K is the unknot. The leading coefficient
ad of ∆K(t) for an alternating knot K is equal to ±1 if and only if K is
fibered. �

We do not prove the above result here, but refer the reader to the literature.
The Alexander polynomial of an alternating knot determines the genus by
a theorem of Crowell [15] and Murasugi [88]. The last statement is another
theorem of Murasugi [89].
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p

Figure 1.6. A Kauffman state of a decorated projection of the
left-handed trefoil knot. The Kauffman state is indicated by a dot
placed in the chosen quadrant at each crossing. The arrow indicates an
orientation on the knot.

An explicit expression for the Alexander polynomial can be given in terms

of a projection P for the oriented link ~L , equipped with the following ad-
ditional choice. Distinguish an edge in the projection P by marking it with
a point p . The projection, together with this choice of edge is called a
decorated link projection.

Let C(P ) denote the set of crossings in the projection and let Dom(P )
denote the set of domains in the plane (i.e. the connected components of the
complement of P ) which do not contain the marking p on their boundary.

Exercise 1.3.5. (a) Show that for a knot K the cardinality |C(P )| is equal
to |Dom(P )|.
(b) Show that for a disconnected projection of a split link L we have |C(P )| 6=
|Dom(P )|.

Definition 1.3.6. A Kauffman state is a map that associates to each
crossing in C(P ) one of the four quadrants around that crossing, so that the
induced map σ : C(P )→ Dom(P ) is a bijection. The set of Kauffman states
in a decorated link projection P will be denoted by K(P ).

When illustrating Kauffman states, we mark the quadrant associated to the
crossing in the diagram, as shown in Figure 1.6.

Exercise 1.3.7. (a) Find all Kauffman states in the decorated projection
of Figure 1.6.

(b) Show that if K admits a projection with a single Kauffman state, then
K is the unknot.

(c) Show that a split link admits a decorated projection with no Kauffman
states.

The complement of the projection of a knot in the plane can be colored with
two colors (say black and white) so that each component of the complement
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Figure 1.7. Local coefficients s and d at a crossing ci .

is colored by one of the colors, and components with the same color do not
share edge. Such a coloring is called a chessboard coloring. Fix a chessboard
coloring for the projection P of the knot K , and define a planar graph
called the black graph ΓB as follows: the vertex set of the graph is the set
of black domains, and two vertices v1, v2 are connected by an edge for each
crossing of the projection which is in the closure of both components D1, D2

corresponding to v1 and v2 . In the same manner we can define the white
graph ΓW of P , which is simply the planar dual of the black graph.

Exercise 1.3.8. (a) Verify the existence of a chessboard coloring of the
diagram D .

(b) Construct a bijection between the set of Kauffman states of the decorated
projection (P, p) of a knot K and the set of spanning trees of the black graph
of a chessboard coloring of P .

(c) Conclude that a projection P of a knot has the same number of Kauff-
man states independent from the choice of the decoration p.

Two quantities can be associated to a Kauffman state κ of P :

(1.5) s(κ) =
∑

ci∈C(P )

s(κ(ci)) d(κ) =
∑

ci∈C(P )

d(κ(ci)),

where the local coefficients s(κ(ci)) ∈ {0,±1
2} and d(κ(ci)) ∈ {0,±1} for

κ ∈ K(P ) at a crossing ci ∈ C(P ) are shown in Figure 1.7: we take s(κ(ci))
and d(κ(ci)) to be the value in the quadrant selected by κ at ci .

The Alexander polynomial for ~L can be expressed in terms of Kauffman
states, as follows:

Proposition 1.3.9. Let ~L be an oriented link, and consider a decorated

projection (P, p) for ~L. Then, the Alexander polynomial is computed by the
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Figure 1.8. Coloring conventions for an alternating diagram.

expression

(1.6)
∑

κ∈K(P )

(−1)d(κ)ts(κ) ∈ Z[t−
1
2 , t

1
2 ].

Note that in the formula only the mod 2 value of d(κ) matters; we keep the
present definition for future reference.

Exercise 1.3.10. (a) Compute the Alexander polynomial of the torus knot
T2,2n+1 by enumerating all its Kauffman states in an appropriate decorated
projection.

(b) The determinant det(K) of the knot K is defined as |∆K(−1)|. Show
that for an alternating diagram the number of Kauffman states is equal to
the determinant of the knot.

Consider the difference δ(κ) = s(κ) − d(κ) for a Kauffman state κ . As we
shall soon see (Theorem 1.3.13 below), for an alternating, δ is independent of
the choice of κ . Indeed, we shall identify this constant with another classical
knot invariant, the signature σ(K). The signature in turn can be defined
in terms of a Seifert surface Σ of K through the Seifert form associated
to a basis of H1(Σ;Z); see for example [106, Section 2.3] for a definition.
There is a formula, the Gordon-Litherland formula, which gives an explicit
description of the signature in terms of a decorated knot projection.

We state without proof a special case of the Gordon-Litherland formula for
alternating projections. (The reader interested in a proof is referred to [37];
see also [106, Corollary 2.7.11].) Let Pos(P ) denote the set of positive
crossings in the projection P and Black(P ) denote the set of black regions.
Note that any alternating projection can be colored so that at each quadrant,
the coloring has the form shown in Figure 1.8.
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Figure 1.9. Computing δ for alternating diagrams.

Theorem 1.3.11 (Gordon-Litherland [37]). Let K be a knot with an al-
ternating projection P , given the checkerboard coloring as indicated in Fig-
ure 1.8. Then,

σ(K) = #Pos(P ) + #Black(P )− 1.

�

Exercise 1.3.12. Use the Gordon-Litherland formula to compute the sig-
natures of the left- and right-handed torus knots T2,±3 .

Theorem 1.3.13. Suppose that (P, p) is an alternating marked diagram of

the knot K . Then there is a constant CP,p for which δ(κ) = σ(K)
2 . for all

Kauffman states of (P, p).

Proof. For an alternating link, the chessboard coloring can be chosen so
that at each crossing, it has the form from Figure 1.8.

Consider the following further local quantity b associated to a Kauffman
state at a crossing. Let bc(κ) = 1 if the Kauffman state lies in one of the
two black quadrants and bc(κ) = 0 otherwise. Moreover, let εc = ±1 be the
local sign at the crossing c , following conventions from Figure 1.3.

Comparing the local contributions to δ = s−d at each crossing c with with

the coloring conventions, as shown in Figure 1.9, we see that δc = (1+ε−b)
2 .

For any Kauffman state κ , all but one of the black regions in the knot
projection contain (exactly) one component in κ ; so∑

c

bc(κ) = #(Black(P )− 1).

It follows that for any Kauffman state κ , the quantity δ(κ) is given by

δ(κ) =
1

2
#Pos(P ) + #Black(P )− 1,

which is a constant independent of the choice of Kauffman state κ . The
Gordon-Litherland formula (Theorem 1.3.11) identifies this constant with
the signature of K .
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Theorem 1.3.13 has the following immediate consequence for alternating
knots:

Corollary 1.3.14 (Cromwell [15]; Murasugi [90]). For an alternating knot
K , the non-zero coefficients of the Alexander polynomial alternate in sign.

�

In a smooth four-manifold X there are two natural notions of embedded
surfaces S : those which are covered by open neighborhoods U ⊂ X so that
the pair (U,U ∩S) is homeomorphic to the local model (R4, 0×0×R2), the
local flatly embedded surfaces; and those for which (U,U∩S) is diffeomorphic
to the local model, smoothly embedded surfaces.

Definition 1.3.15. The knot K ⊂ S3 is said to be smoothly slice resp.
topologically slice if there is a smooth resp. locally flat embedding

f : (D2, ∂D2)→ (D4,K ⊂ S3 = ∂D4).

According to the Fox-Milnor condition, the Alexander polynomial provides
an obstruction for sliceness:

Theorem 1.3.16 (Fox-Milnor [24]). Suppose that K ⊂ S3 is a topologically
slice knot. Then there is a polynomial f ∈ Z[t] such that

∆K(t) = f(t) · f(t−1).

Exercise 1.3.17. Show that the Figure-8 and the trefoil knots (the knots 41

and 31 in Rolfsen’s table [118]) are not topologically slice.

Obviously, every smoothly slice knot is topologically slice. The fact that
there are topologically slice knots that are not smoothly slice is one of the
first manifestations of the subtlety of differential four-manifold topology in
knot theory.

1.4. Euler structures on three-manifolds

Spinc structures will play an important role in our subsequent discussions
and constructions. These structures can be defined in any dimension, but the
three-dimensional case has a more concrete, geometric formulation, which
are the Euler structures of Turaev [137]. We describe Turaev’s construction
presently.

Recall that the tangent bundle of a closed, oriented three-manifold Y is
trivial; in particular Y admits a nowhere vanishing vector field. Fix a
Riemannian metric on TY , and let Vec∗(Y ) denote the set of unit length



1.4. Euler structures on three-manifolds 23

vector fields over Y up to homotopy (through unit vector fields). We have
the following definition from [137].

Definition 1.4.1. Two unit vector fields v1 and v2 on a connected three-
manifold Y are said to be homologous if the vector fields are homotopic
through unit vector fields in the complement of a point y ∈ Y . A homology
class [v] of a unit vector field v is called an Euler structure1 on Y . The
set of Euler structures on Y is denoted [Vec∗(Y )].

Euler structures over Y can be made into an affine space for H2(Y ;Z), with
the help of the following notions.

Definition 1.4.2. Let Y be a connected three-manifold, and let f1, f2 : Y →
S2 be two maps. We say that f1 and f2 are homologous if for some p ∈ Y
their restrictions to Y \ {p} are homotopic.

Lemma 1.4.3. Fix a generator µ ∈ H2(S2;Z) ∼= Z. The map sending
f : Y → S2 to f∗(µ) induces a one-to-one correspondence between H2(Y ;Z)
and homology classes of maps from Y to S2 .

Proof. Consider the diagram

(1.7)

[Y, S2] H2(Y ;Z)

[Y \ {p}, S2] H2(Y \ {p};Z)

α

β γ

δ

where the horizontal maps are induced by pullback f 7→ f∗(µ), and the
vertical ones by restriction. In particular, the space of homology classes of
maps from Y to S2 coincides with the image of β . It is elementary to verify
that γ is an isomorphism.

For any CW complex X , H2(X;Z) corresponds to homotopy classes of maps
from X to the infinite dimensional complex projective space CP∞ , a space
which can be given the structure of a CW complex obtained by attaching
cells of dimension ≥ 4 to S2 . By the Cellular Approximation Theorem
(cf. [47, Theorem 4.8]), for a three-dimensional CW complex, such as Y ,
the pull-back map f 7→ f∗(µ) induces a surjective map [Y, S2]→ H2(Y ;Z);
i.e. the map α in Euqation (1.7) is surjective.

Moreover, applying cellular approximations to homotopies, it also follows
that for a two-dimensional CW complex Z , the pull-back map induces an

1Turaev calls these smooth Euler structures, to distinguish them from his combinatorial Euler

structures, which we will not discuss here.
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isomorphism [Z, S2] ∼= H2(X;Z). Since Y \ {p} is homotopy equivalent to
a two-dimensional CW complex, it follows that δ is an isomorphism.

We conclude that the pull-back map induces a one-to-one correspondence
between H2(Y ;Z) and the image of β , as stated.

Fix a trivialization of the tangent bundle τ : TY → Y × R3 . This induces
an identification of Vec∗(Y ) with the set of homotopy classes of maps from
Y to S2 , denoted [Y, S2] : compose the vector field v : Y → TY with τ ,
followed by projection to the R3 factor and (since v is nowhere zero) by the
natural map R3 \ {0} → S2 . By pulling back the generator µ ∈ H2(S2;Z)
with the above composition, we obtain a map

(1.8) fτ : [Vec∗(Y )]→ H2(Y ;Z)

which is a one-to-one correspondence by Lemma 1.4.3. Thus, given [v] ∈
[Vec∗(Y )] and a ∈ H2(Y ;Z), there is a unique [v′] ∈ [Vec∗(Y )] so that
fτ ([v]) − fτ ([v′]) = a . This defines an action of H2(Y ;Z) on [Vec∗(Y )],
where a ∈ H2(Y ;Z) sends [v] to [v′] . Although the value fτ ([v]) might
depend on the choice of τ , the action of H2(Y ;Z) defined above does not,
according to the following:

Proposition 1.4.4. The action defined above gives a transitive, faithful
action of H2(Y ;Z) on [Vec∗(Y )] that is independent of the choice of the
trivialization τ .

Proof. The fact that the action is transitive and faithful is an imme-
diate consequence of Lemma 1.4.3. It remains to verify that the action is
independent of τ . To this end, let τ, τ ′ be two trivializations of the tan-
gent bundle of Y . We want to show that for any two homology classes
[v], [v′] ∈ [Vec∗(Y )],

fτ ([v])− fτ ([v′]) = fτ ′([v])− fτ ′([v′]);

or equivalently, that

(1.9) fτ ′([v])− fτ ([v]) = fτ ′([v
′])− fτ ([v′]).

Observe first that given τ and τ ′ there is a map γ : Y → SO(3) with the
property that τ ′(y) = τ(y)∗γ(y), where ∗ represents the pointwise action of
SO(3) on the trivializations of TyY . In particular, for any non-zero vector
field v , we have that τ ′ ◦ v = (τ ◦ v) ? (γ(y)), where now ? is induced from
the rotation action r : S2 × SO(3)→ S2 .
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Recall that H2(SO(3);Z) ∼= Z/2Z and let x denote its non-zero element.
Under the Künneth decomposition we have

H2(S2 × SO(3);Z) ∼= H2(S2;Z)⊕H2(SO(3);Z) ∼= Z⊕ Z/2Z.

If µ ∈ H2(S2;Z) is a generator, then a straightforward computation shows
that r∗(µ) = µ+ x . It follows that (τ ′ ◦ v)∗(µ) = (τ ◦ v)∗(µ) + γ∗(x); i.e.

fτ ′([v])− fτ ([v]) = γ∗(x).

Since the right-hand-side is independent of [v] , Equation (1.9) follows.

Given an Euler structure [v] , there is another Euler structure J [v] , repre-
sented by −v . An Euler structure gives rise to a two-dimensional cohomol-
ogy class c1([v]) = [v]− [Jv] .

Exercise 1.4.5. Show that c1([v]) is the first Chern class of the oriented
two-plane bundle v⊥ .

Example 1.4.6. For Y = S3 we have Vec∗(S3) ∼= Z, as it can be identified
with [S3, S2] ∼= π3(S2) ∼= Z; whereas [Vec∗(S3)] consists of a single point,
since H2(S3;Z) = 0.

Having introduced the notion of homology classes of vector fields [Vec∗(Y )],
we turn to the study of the larger set Vec∗(Y ) itself.

Note that a non-vanishing vector field on a three-manifold can be modified
in a neighborhood of any point. Such local modifications are parameterized
by π3(S2) ∼= Z , the space of homotopy classes of (non-vanishing) vector
fields on S3 . Equivalently, this action can be realized as forming connected
sum with the vector fields on S3 . This construction provides a Z-action on
the set Vec∗(Y ).

Definition 1.4.7. The divisibility of a class ξ ∈ H2(Y ;Z) is the integer
defined to be 0 if ξ is torsion; otherwise, it is the largest positive integer
n so that ξ ∈ n ·H2(Y ;Z). Equivalently, the divisibilty is the non-negative
generator of the image of the map H2(Y ;Z) → Z obtained by evaluating
against ξ .

Proposition 1.4.8. The quotient of Vec∗(Y ) by the above Z action is the
set [Vec∗(Y )]. Moreover, the stabilizer of v ∈ Vec∗(Y ) is the subgroup
dZ ⊂ Z, where d is the divisibility of c1(v) ∈ H2(Y ;Z).

Proof. Fix a trivialization τ for TY . As noted earlier, τ induces an
identification between Vec∗(Y ) and [Y, S2] . The Pontryagin-Thom con-
struction [79] identifies [Y, S2] with the framed cobordism classes of framed
1-manifolds in Y ; this space is denoted by Ωfr

1;Y . This map can be defined
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by taking a smooth representative of the homotopy class, and taking the
pre-image of a regular value, together with a basis of its tangent plane (the
latter providing the framing).

We can organize the information in the following diagram:

Vec∗(Y ) [Y, S2] Ωfr
1;Y

[Vec∗(Y )] H2(Y ;Z) H1(Y ;Z)

H2(Y ;Z)

v 7→ τ ◦ v PT

v 7→ [v] φ 7→ φ∗(µ) Π

fτ PD

×2det

The horizontal maps here are all isomorphisms: PT denotes the Pontryagin-
Thom isomorphism; PD denotes Poincaré duality; and fτ is the map from
Equation (1.8). The top three spaces have Z actions: two have been dis-
cussed before, and the Z-action on Ωfr

1;Y is defined by changing the framing.
The vertical maps connecting the top two rows are quotients; Π forgets the
framing on the one-cycle.

The maps on the top row respect the natural Z-actions on the three sets.

Thus, to complete the argument, it suffices to understand the stabilizer of
the Z-action on Ωfr

1;Y .

Suppose that the link L ⊂ Y with framings f and f + n are framed
cobordant. The framed cobordism F0 in [0, 1] × Y can be closed up to
give a surface F ⊂ S1 × Y with self-intersection n . Consider the surface
G = S1 × L ⊂ S1 × Y ; it has self-intersection 0. Moreover, since both G
and F meet a slice {0} × Y along the same oriented one-manifold L , the
homology class [G]− [F ] ∈ H2(S1×Y ) can be represented by a surface that
is disjoint from {0} × Y ; hence, it is homologous to the image of a surface
A ⊂ Y , included in some slice {p} × Y in [0, 1]× Y .

Under the Künneth decomposition we have

H2(S1 × Y ) ∼= H2(Y )⊕
(
H1(Y )⊗H1(S1)

)
= H2(Y )⊗H1(Y ).

Homology classes in the first summand are those contained in the image
of i∗ : H2(Y ) → H2(Y × S1), where i : Y → S1 × Y is the inclusion map
into some slice {p} × Y ; the homology class [F ] − [G] is contained in this
first summand. By construction, [G] is contained in the H1(Y ) ⊗ H1(S1)
summand.
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Since homology classes from either summand have self-intersection number
equal to 0, it follows that

n = #([F ] ∩ [F ])

= #(([F ]− [G]) + [G]) ∩ ([F ]− [G]) + [G])

= 2#(([F ]− [G]) ∩ [G])

= 2〈i∗[A], [S1 × L])〉S1×Y

= 2〈[A],PD[L]〉Y
= 〈[A], c1([v])〉,

where i∗[A] = [F ] − [G] . In particular, the divisibility d of c1([v]) divides
n .

Conversely, given [A] ∈ H2(Y ;Z), let A ⊂ Y be an embedded representa-
tive, thought of as included in {1

2}×Y . The above computation shows that
F0 obtained by smoothing out the double points in A ∪ ([0, 1]× L) ⊂ [0, 1]
gives a framed cobordism from L with framing f and L with framing
f + 2〈[A],PD[L]〉Y . In particular, framings f and f + d (for the divisibility
d of c1([v])) along L are framed cobordant, concluding the proof.

Remark 1.4.9. We will henceforth refer to the set of Euler structures
[Vec∗(Y )] on a three-manifold as the set of spinc structures over Y , and
accordingly denote the set by Spinc(Y ). Implicit in this notation is an iden-
tification with the more classical notion of spinc structures on Y . The
classical construction is recalled in Appendix 32; indeed its indentification
with Euler structures is spelled out in Section 32.3.





Chapter 2

Heegaard diagrams

Heegaard Floer homology is defined using a combinatorial description of a
three-manifold, called a Heegaard diagram, which is a certain picture drawn
on a surface. We define these diagrams in Section 2.1, and in Section 2.2
we describe a complete set of moves that can be used to connect any two
Heegaard diagrams for the same three-manifold. In Section 2.3 we explain
how to extract basic algebro-topological information about the underlying
three-manifold (i.e. its fundamental group and homology groups) from a
Heegaard diagram representing it. In Section 2.4 we introduce Heegaard
states, and study some of their basic properties. Heegaard states play a
prominent role in our subsequent discussions: as we shall see in Chapter 9,
they generate the Heegaard Floer chain complex.

Heegaard Floer homology will be constructed in terms of a Heegaard dia-
gram equipped with an auxiliary choice of a basepoint. In Section 2.5, we
formalize this choice, introduce pointed Heegaard diagrams, and refine the
notion of Heegaard moves for pointed Heegaard diagrams. In Section 2.6 we
associate spinc structures to Heegaard states. This construction is further
refined in Section 2.7 to a grading by nowhere vanishing vector fields. We
conclude this chapter in Section 2.8 with some topological motivation for
studying Heegaard states.

2.1. Definitions and examples

Before introducing Heegaard diagrams, we start with some preliminaries.

Definition 2.1.1. Let Σ be a closed surface of genus g . A complete set
of attaching circles is a collection of disjoint, embedded simple closed

29
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α1 α2

Figure 2.1. A complete set of attaching circles for a surface of
genus 2 .

curves α = {α1, . . . , αg} whose homology classes [α1], . . . , [αg] are linearly
independent in H1(Σ;Z/2Z). See Figure 2.1 for an example.

The following elementary result provides several alternative ways to think
about complete sets of attaching circles.

Proposition 2.1.2. Let Σ be a surface of genus g , and let α = {α1, . . . , αg}
be a set of g disjoint, embedded simple closed curves in Σ. The following
conditions are equivalent:

(A-1) The homology classes in H1(Σ;Z/2Z) induced by α1, . . . , αg are
linearly independent.

(A-2) The homology classes in H1(Σ;Z) induced by α1, . . . , αg are lin-
early independent (over Z).

(A-3) The complement Σ \ (α1 ∪ · · · ∪ αg) is a connected surface.

(A-4) The complement Σ \ (α1 ∪ · · · ∪ αg) is a planar surface.

Proof. Consider the surface F obtained by cutting Σ along α . The
boundary of F contains two copies of each αi , which we denote α′i and α′′i .
If F is disconnected, then it must contain some component that contains
α′i but not α′′i . That component would then give rise to a non-trivial ho-
mological relation between the homology class [αi] and the [αj ] with j 6= i ,
all viewed as classes in H1(Σ;Z/2Z). Thus, that (A-1)⇒ Condition (A-3).

Conversely if Condition (A-3) holds, for each i , we can connect α′i and α′′i
by an arc that closes up in Σ to give a curve βi which is disjoint from
all the αj with i 6= j , meeting αi transversely in one point. The mod
2 intersection number with the homology classes [β1], . . . , [βg] now gives a
homomorphism from H1(Σ;Z) → Z/2Zg , sending [α1], . . . , [αg] to a basis.
Thus, Condition (A-3)⇒(A-1).
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We have verified the equivalence Condition (A-3)⇔(A-1). Verifying the
equivalence Condition (A-3)⇔(A-2) is similar, only now we use homolgy
with coefficients in Z and signed intersection numbers instead.

To verify Conditions (A-3)⇔(A-4), observe that χ(Σ \ α) = χ(Σ); so,
decomposing Σ \α into path-connected components ∪ni=1Fi and letting gi
denote the genus of Fi , we have that

2− 2g =

(
n∑
i=1

(2− 2gi)

)
− 2g.

It follows that n = 1 (i.e. Condition (A-3) holds) if and only if each gi = 0
(i.e. Condition (A-4) holds).

Proposition 2.1.3. Let Σ be an oriented genus g surface, and suppose that
β and γ are two complete sets of attaching circles for Σ. Then there is an
orientation-preserving diffeomorphism φ : Σ→ Σ that takes β to γ .

Proof. Cut Σ along β1, . . . , βg and get a compact planar surface Pβ with
2g boundary components, together with an orientation reversing involution
on ∂Pβ . Cutting along γ1, . . . , γg gives a similar surface Pγ . By the classi-
fication theorem for surfaces, we can find a diffeomorphism from Pβ to Pγ
that respects these involutions. This map glues together to give the desired
diffeomorphism φ .

Definition 2.1.4. A complete set of attaching circles α in Σ specifies a
three-manifold–with–boundary Uα together with an identification ∂Uα ∼= Σ.
The manifold Uα is built from [0, 1] × Σ by attaching g three-dimensional
2-handles along {0} × α1, . . . , {0} × αg ⊂ {0} × Σ to get a three-manifold
with two boundary components, one of which is {1}×Σ (naturally identified
with Σ), and the other one is a two-sphere. Attaching a three-dimensional
3-handle, we obtain the desired handlebody Uα .

The three-manifold Uα described above depends only on the choice of the
genus g ; in fact, it is homeomorphic to a regular neighborhood of a bouquet
of g circles in R3 . This three-manifold is called the genus g handlebody.

Remark 2.1.5. It is costumary to call the above three-manifold Uα a han-
dlebody, although earlier (in Definition 1.1.2) a manifold with a handle de-
composition was called the same name. We hope no confusion will arise
from this.

The genus g handlebody can be built from D3 by regarding it as a three-
dimensional 0-handle and attaching g (three-dimensional) 1-handles to it.
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β

α

Figure 2.2. Standard genus 1 Heegaard diagram for S3 . At
the left is the Heegaard diagram. For the middle, we consider [−1, 1]×
Σ, which is the shown solid torus with the dotted one removed, and
equipped with a copy of α on {−1} × Σ and a copy of β on {1} × Σ.
At the right, we fill in the copies of α and β by disks. The remaining
two 2-spheres are filled with balls to obtain S3 .

This description equips the boundary with a complete set of attaching cir-
cles, provided by the belt circles of the 1-handles; see Figure 2.1 for a picture
with genus 2. A simpler example is the genus 1 handlebody, which is dif-
feomorphic to the solid torus S1 × D2 , equipped with a circle of the form
{p} × (∂D2) with p ∈ S1 .

Definition 2.1.6. A Heegaard diagram is a triple H = (Σ,α,β), where
Σ is a closed, connected, oriented surface of genus g , and α = {α1, . . . , αg}
and β = {β1, . . . , βg} are each complete sets of attaching circles in Σ. A
Heegaard diagram is called generic if each αi intersects each βj transver-
sally.

Note that the g -element sets α and β are not ordered; sometimes, however,
we will find it convenient to fix orderings on these sets (i.e. thinking of α
and β as ordered g -tuples of curves).

A Heegaard diagram H = (Σ,α,β) can be used to build a closed, oriented
three-manifold Y , by gluing the boundary of Uα (which is identified with
Σ) to the boundary of −Uβ (which is identified with −Σ). We say that the
Heegaard diagram H represents Y .

Suppose that Y is an oriented, connected three-manifold. A separating
surface Σ ⊂ Y that decomposes Y as a union of two handlebodies Uα and
Uβ provides a Heegaard splitting for Y . The three-manifold associated to a
Heegaard diagram constructed above is equipped with a natural Heegaard
splitting.

Example 2.1.7. The two-sphere, equipped with two empty sets of curves
α and β is the genus zero Heegaard diagram for S3 . A more interesting
Heegaard diagram for S3 is the genus one surface T 2 , equipped with a pair
of curves α and β that intersect in a single point. This diagram is called
the standard genus one Heegaard diagram for S3 , shown on the left
in Figure 2.2.

The genus one Heegaard diagram for S3 has the following generalization:
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α

β

α

β

Figure 2.3. More genus 1 Heegaard diagrams. At the left, we
have the Heegaard diagram for L(5, 2). (For clarity, we have translated
the α -circle up a little.) At the right, a generic Heegaard diagram for
S1 × S2 is shown.

Example 2.1.8. Fix relatively prime integers (p, q) with p ≥ 1 and q 6= 0.
Consider the Heegaard diagram on the genus one surface Σ1 = (R⊕R)/(Z⊕
Z), where α is the image of the horizontal line R ⊕ 0 under the quotient
map and β is the image of the line {(qt, pt) | t ∈ R}. Note that the curves
α and β meet transversally in p points in the torus Σ1 . This is a genus
one Heegaard diagram for the lens space L(p, q); see the left diagram of
Figure 2.3.

Example 2.1.9. Consider the genus one surface Σ1 equipped with the same
two homologically non-trivial curves α . This is a (non-generic) genus one
Heegaard diagram for S1 × S2 . We can find a generic Heegaard diagram
(Σ1, {α}, {β}) for S1×S2 , where β is isotopic to, but disjoint from, α ; see
the right diagram of Figure 2.3.

Exercise 2.1.10. (a) Show that the diagram from Example 2.1.8 indeed
represents the lens space L(p, q).

(b) Show that any three-manifold that admits a Heegaard diagram with genus
1 is either a lens space L(p, q) (including S3 ), or S1 × S2 .

Example 2.1.11. We construct a family of Heegaard diagrams Hn para-
metrized by n ∈ Z; in Figure 2.4 we illustrated the diagram for n = 2.
In describing the family, consider the plane compactified with a point at
infinity to give S2 , and delete four open disks from S2 to obtain a planar
surface with four boundary components. Think of the genus 2 surface Σ2 as
obtained from this planar surface by identifying the boundary circles in pairs
via reflections (preserving the vertical coordinate). Consider the four curves
indicated in Figure 2.4. Note that after identifying the two left circles, the
arc α1 becomes a closed curve; and similarly, after the identification of the
two right circles, α2 becomes a closed curve. The curve β1 is evidently a
closed curve. Our family of Heegaard diagrams is obtained from the curve
β2 , changing it so that it winds around the right circle various times. For
n ≥ 0 instead of winding around the right circle two times as in the picture,
we wind around n times. When n < 0, we wind around −n times in the
opposite direction. Let Wn be the three-manifold represented by Hn .
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β1

β2α1 α2

Figure 2.4. Heegaard diagram H2 from Example 2.1.11. Here
the four circles are the feet of the two 1-handles, hence the line segments
α1 and α2 close up to circles in the genus 2 surface.

Exercise 2.1.12. Let Hn = (Σ, {α1, α2}, {β1, β2}) be the diagram from
Example 2.1.11. Consider any orientation-preserving self-diffeomorphism
of Σ2 that maps β1 and β2 to α1 and α2 . Draw the images of α1 and α2

under this diffeomorphism.

Example 2.1.13. Consider a genus three Heegaard diagram, constructed as
follows. Start from S2 with six distinguished points {vi}i∈{±1,±2,±3} chosen

so that v1, v2, v3 is an ortho-normal basis for R3 , and v−i = −vi . Draw 12
edges eij , connecting vi to vj for all j 6= ±i. Combinatorially, this gives
the octahedron. Next, choose open disks {Di}i∈{±1,±2,±3} so that Di is a
neighbourhood of vi and reflection through the plane orthogonal to vi sends
Di diffeomorphically to D−i . Consider the genus 3 surface Σ3 obtained
from S2 \ ∪i∈{±1,±2,±3}Di by identifying ∂Di with ∂D−i . The edges glue
up to give three closed curves in Σ, which we label β = {β1, β2, β3}; for
i = 1, . . . , 3, ∂Di can be viewed as a closed curve in Σ3 , which we denote
αi . Letting α = {α1, α2, α3}, show that (Σ3,α,β) is a Heegaard diagram
for the three-torus T 3 . See Figure 2.5.

We can construct new Heegaard diagrams out of old ones by the following
construction:

Definition 2.1.14. Let H = (Σ,α,β) and H′ = (Σ′,α′,β′) be two Hee-
gaard diagrams, and choose points

w ∈ Σ\(α1∪· · ·∪αg∪β1∪· · ·∪βg) and w′ ∈ Σ′\(α′1∪· · ·∪α′g∪β′1∪· · ·∪β′g).

There is a new Heegaard diagram H#H′ , the connected sum of H and
H′ , whose underlying Heegaard surface is the connected sum Σ#Σ′ of Σ
and Σ′ at w and w′ , and whose α-circles are α ∪ α′ and whose β -circles
are β ∪ β′ .
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Figure 2.5. Heegaard diagram for T 3 . The Heegaard surface is the
octahedron with six open disks removed, and oppositely placed bound-
ary circles identified in pairs. The blue arcs glue up to give the three
curves in β . (Each β -circle is glued up from 4 coplanar blue arcs.) The
six red circles give three closed curves α .

w
w′

w′′

Σ#Σ′

Σ Σ′

Figure 2.6. The connected sum of H = (Σ,α,β, w) with H′ =
(Σ′,α′,β′, w′) . We have also indicated a point w′′ in the connected
sum neck that is disjoint from the α - and β -circles.

It is straightforward to see that if H represents the three-manifold Y and H′
represents Y ′ , then H#H′ represents the connected sum of the underlying
three-manifolds, Y#Y ′ . Also, if H = (Σ,α,β) is a Heegaard diagram for
Y , then Hop = (Σ,β,α) defines −Y .

We have the following general existence result:

Theorem 2.1.15. Let Y be any closed, connected, oriented three-manifold.
There exists a Heegaard diagram that represents Y .

Proof. Consider a self-indexing Morse function f with a unique maximum
and minimum on Y , the existence of which is provided by Theorem 1.1.8.
According to Theorem 1.1.6, the function f induces a handle decomposition
of Y . Let Y1 be the union of the 0-handle and all the 1-handles in this
decomposition.

The Heegaard surface Σ is the oriented boundary of Y1 . Let the belt circles
of the 1-handles be the α-circles (regarded as circles in Σ = ∂Y1 ), and the
attaching circles of the 2-handles be the β -circles (again, regarded as circles
in Σ = ∂Y1 ).
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If f has g index-1 critical points, then Y1 is a genus g handlebody, Σ is a
surface of genus g , and we get g α-curves in this way. Considering 3 − f
instead of f , we get another self-indexing Morse function on Y , with the
same critical points as f . An index-i critical point of f is an index-(3− i)
critical point of 3−f , and the attaching circles of the index-2 critical points
of f are the belt circles of the index-1 critical points of 3 − f . The union
of the 0-handle and the 1-handles of the handle decomposition induced by
3− f give the complement of Y1 in Y , and since the genus of the common
boundary determines the number of 1-handles in the handlebody, we get
that the diagram defined above has g α- and g β -circles.

The resulting Heegaard diagram presents Y , concluding the proof.

Remark 2.1.16. Each α-circle corresponds to an index-1 critical point,
and after fixing a metric the circle can be chosen to be those points of Σ
which flow under the downward gradient flow −∇f to the critical point.
Similarly, the β -circles flow up to the index-2 critical points by the upward
gradient flow ∇f ; cf. Theorem 1.1.6.

2.2. Heegaard moves

In this section we describe three basic moves that change the Heegaard
diagram while preserving the underlying three-manifold.

Suppose that α = {α1, . . . , αg} and α′ = {α′1, . . . , α′g} are two sets of
attaching circles in Σ. We say that α and α′ are isotopic if there is a
diffeomorphism f : Σ→ Σ that is isotopic to the identity, so that α′ is the
image of α under f .

We say that α and α′ differ by a handle slide if, after renumbering the
curves if necessary, the following conditions hold:

• α′i = αi for i > 1.

• α′1 is disjoint from α1, . . . , αg

• The curves α′1 , α1 , and α2 bound an embedded subsurface of
Σ \ (α3 ∪ · · · ∪ αg) that is diffeomorphic to the sphere minus three
disks (a so-called pair-of-pants).

In this case, we say that α′1 is obtained by sliding α1 over α2 . See Figure 2.7
for a picture.

A handle slide on α = {α1, . . . , αg} can be specified by an embedded arc δ
connecting some point in α1 to some point in α2 in the complement of the
other α-circles. The pair-of-pants of the handle slide is then the thickening
of α1 ∪ α2 ∪ δ .
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α′1 α2 α1

α2 α1

δ

Figure 2.7. Handle slide. The oriented arc δ from α1 to α2 on the
left specifies a handle slide, as pictured on the right. On the right, the
pair-of-pants (which can be thought of as a neighborhood δ ∪ α1 ∪ α2 )

is shaded.

It is not hard to see that if α′ and α differ by a handleslide, then both sets
of attaching circles specify the same handlebody. More generally, we have
the following:

Exercise 2.2.1. Show that if α and α ′ are disjoint complete sets of at-
taching circles in Σ, then they are attaching sets for the same handlebody,
in the sense that there is diffeomorphism from Uα to Uα′ that fixes the
boundary pointwise.

Definition 2.2.2. Let H = (Σg, {α1, . . . , αg}, {β1, . . . , βg}) be a Heegaard
diagram. The stabilization H′ of H is the diagram obtained by taking the
connected sum of H with the standard genus 1 Heegaard diagram for S3 .
Dually, we call H a destabilization of H′ .

Clearly, H′ contains a new pair of circles αg+1 and βg+1 , which are disjoint
from all other attaching circles and which meet each other in one point.
For an illustration, note that the connected sum in Figure 2.6 is, in fact, a
stabilization.

Definition 2.2.3. A Heegaard move on the Heegaard diagram H gives a
new Heegaard diagram H′ so that one of the three conditions holds:

• H = (Σ,α,β) and H′ = (Σ,α′,β), where α and α′ are iso-
topic; or H = (Σ,α,β) and H′ = (Σ,α,β′), where β and β′ are
isotopic. In this case, we say that H′ is obtained from H by an
isotopy .

• H = (Σ,α,β) and H′ = (Σ,α′,β) (or H = (Σ,α,β) and H′ =
(Σ,α,β′)), where α and α′ (or β and β′ ) are related by a handle
slide. In this case, we say that H′ is obtained from H by a handle
slide.

• H′ is a stabilization or a destabilization of H .

Exercise 2.2.4. Suppose that (Σ,α,β) is a Heegaard diagram, and suppose
that α1 and β1 meet in exactly one point. Show that all the other circles
can be moved by isotopies and handle slides until they are disjoint from both
α1 and β1 .
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Definition 2.2.5. We say that two diagrams (Σ, α , β ) and (Σ′, α ′, β ′) are
equivalent , if there is an orientation-preserving diffeomorphism f : Σ→ Σ′

between the Heegaard surfaces such that f(α) = α ′ and f(β ) = β ′ .

For example, in Example 2.1.8, the Heegaard diagrams for L(p, q) and
L(p, q + p) are equivalent.

It is easy to see that Heegaard diagrams which are equivalent, or are con-
nected by Heegaard moves, determine diffeomorphic three-manifolds. In
fact, Heegaard moves are complete, in the following sense:

Theorem 2.2.6. Let Y be a closed, oriented three-manifold and suppose
that

H = (Σg,α,β), and H′ = (Σg′ ,α
′,β′)

are two Heegaard diagrams for Y . Then, there is a sequence of Heegaard
moves that transform the first diagram into one that is equivalent to the
second.

A proof of this theorem will be given in Chapter 31.

Exercise 2.2.7. (a) Use Heegaard moves to show that W−1 and W−3 of
Example 2.1.11 can both be represented by genus 1 Heegaard diagrams.

(b) Find q and q′ so that W−1 = L(5, q) and W−3 = L(7, q′).

(c) Show that W−2 can be decomposed as the connected sum of two lens
spaces. What are these lens spaces?

2.3. Heegaard diagrams and algebraic topology

Our goal here is to describe topological information about a three-manifold
Y explicitly in terms of a Heegaard diagram representing Y .

As a first example, consider the fundamental group π1(Y,w) of a three-
manifold Y , specified by a Heegaard diagram H = (Σ,α,β), based at a
point w ∈ Σ \ (α ∪ β) ⊂ Y . Orient each α- and β -circle. Consider the
group whose generators {γ1, . . . , γg} correspond to the α-curves, as follows.
The generator γi is a closed loop in Σ based at w that crosses αi exactly
once, in a single, transverse intersection point, and is disjoint from all αj
with j 6= i . Given each curve βj , define a word w(βj) in {γ1, . . . , γg} as
follows. Fix any point on βj , and traverse it in the direction specified by
the orientation. Terms in w(βj) correspond to the intersection points of βj
with the various α-curves; the term corresponding to some p ∈ αi ∩ βj is

either γi or γ−1
i , depending on the local intersection number of αi and βj

at p ; and the order of these terms is specified by the orientation of βj . See
Figure 2.8. It is an easy exercise using the Seifert-Van Kampen theorem to
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β2

β1

α1 α2

Figure 2.8. Presentation of π1 in terms of Heegaard diagrams.
Orient β1 , α1 , and α2 as indicated. The six intersection points of β1

with α1 ∪ α2 , traversed in the cyclic order specified by the orientation
on β1 , gives the word w(β1) = γ1γ2γ

−1
1 γ2γ1γ

−1
2 .

verify that
π1(Y ) ∼= 〈γ1, . . . , γg

∣∣w(β1), . . . , w(βg)〉.

Exercise 2.3.1. Consider the manifold Wn defined by the Heegaard diagram
Hn of Example 2.1.11 (cf. also Figure 2.8).

(a) Give a presentation of π1(Wn) with two generators and two relations.

(b) Show that π1(W−1) ∼= Z/5Z , π1(W−2) ∼= (Z/2Z)∗(Z/3Z), and π1(W−3) ∼=
Z/7Z .

We now turn to the homology groups of Y , phrased in terms of the Hee-
gaard diagram. The oriented curves α1, . . . , αg and β1, . . . βg determine a
homomorphism φ : Zg ⊕ Zg → H1(Σ;Z), by the formula

φ : (m1, . . . ,mg, n1, . . . , ng) 7→
∑

mi[αi] + ni[βi].

The cokernel of this homomorphism is H1(Σ;Z)
Span([α1],...,[αg ],[β1],...,[βg ]) , and its ker-

nel can be thought of as the group of homological relations in H1(Σ;Z)
between the α- and β -curves.

Proposition 2.3.2. There is an identification

H1(Σ;Z)

Span([α1], . . . , [αg], [β1], . . . , [βg])
∼= H1(Y ;Z).

Similarly, there is an identification between the kernel of φ and H2(Y ;Z).
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Proof. Consider the long exact sequence of the pair (Y,Σ) (with the
understanding that homology is taken with Z coefficients),

· · · → H2(Σ)→ H2(Y )→ H2(Y,Σ)
δ→ H1(Σ)→ H1(Y )→ H1(Y,Σ)→ . . .

By excision, Hi(Y,Σ;Z) ∼= Hi(Uα,Σ;Z) ⊕ Hi(Uβ,Σ;Z). Clearly, for a
handlebody U with ∂U = Σ we have H1(U,Σ;Z) ∼= H2(U ;Z) = 0 and
H2(U,Σ;Z) ∼= H1(U ;Z) ∼= Zg . Therefore the rightmost displayed term in
the above sequence is 0. Moreover, the image of ∂∗ : H2(U,Σ;Z)→ H1(Σ;Z)
is the span of the homology classes of the attaching circles. Thus, the map
labeled δ in the above sequence can be identified with the map φ , and
the H1 computation follows. The map from Z ∼= H2(Σ;Z) → H2(Y ;Z) is
trivial, as the Heegaard surface bounds a handlebody. Thus, the H2 com-
putation follows, as well.

The above proposition has the following consequence which will be of interest
to us:

Corollary 2.3.3. Let |H1(Y ;Z)| denote the number of elements in H1(Y ;Z)
if the latter is a finite group; and let it be 0 otherwise. Then,

det(#(αi ∩ βj)gi,j=1) = |H1(Y ;Z)|.

Here, #(αi ∩ βj) denotes the algebraic intersection number of the oriented
curves αi and βj in Σ.

Proof. Consider the map H1(Σ)→ Zg defined by

γ 7→ (#(α1 ∩ γ), . . . ,#(αg ∩ γ)).

This map induces an isomorphism

H1(Σ)

Span([α1], . . . , [αg])
∼= Zg;

furthermore the map identifies the quotient space H1(Σ)
Span([α1],...,[αg ],[β1],...,[βg ])

with the cokernel of the g × g matrix

M = #(αi ∩ βj)gi,j=1.

Thus, Proposition 2.3.2 identifies H1(Y ;Z) with the cokernel of M . The
corollary follows.

Exercise 2.3.4. Compute H1(Wn;Z) and H2(Wn;Z).
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αi

βj

p

apbp

cp dp

Figure 2.9. Local multiplicities of a domain at an intersection
point p ∈ αi ∩ βj .

The curves
⋃g
i=1 αi ∪ βi divide Σ into a collection of path-connected com-

ponents

Σ \ (α1 ∪ ... ∪ αg ∪ β1 ∪ ... ∪ βg) =

m⋃
k=1

int D◦k.

The closed sets Dk = D◦k are called the elementary domains. A domain D
is a formal linear combination of elementary domains:

D =
∑
k

mkDk,

with mk ∈ Z . The multiplicity of D at a point p ∈ Σ \ (α ∪ β ) is the
coefficient of the elementary domain containing p in the expression for D .

We have the following concrete description of two-dimensional homology
classes in terms of domains of H .

Definition 2.3.5. Let (Σ,α,β) be a generic Heegaard diagram, and fix a
domain D . At each intersection point p of αi and βj , we have at most
four neighbouring regions {Dk} which meet at the corner p. We label the
local multiplicities of D by ap , bp , cp , dp according to the conventions in
Figure 2.9. A domain D is called cornerless if at each point p ∈ αi ∩ βj
(for all i, j ∈ {1, . . . , g}), the four local multiplicities satisfy the relation

ap + cp = bp + dp.

Fix a point w ∈ Σ \ (α ∪ β ). A periodic domain is a cornerless domain

whose multiplicity at w is 0. Let P̃ denote the Abelian group of cornerless
domains, and Pw the subgroup of periodic domains.

Example 2.3.6. In the standard genus 1 Heegaard diagram for S3 , at
the single intersection point all four local multiplicities are the same, so we

find that P̃ ∼= Z and Pw = 0. Consider the genus 1 Heegaard diagram
for S1 × S2 , where the curves α and β are disjoint. In this diagram, all

domains are cornerless, so P̃ ∼= Z⊕ Z and Pw ∼= Z.

Lemma 2.3.7. There is an isomorphism P̃ ∼= Z ⊕H2(Y ;Z); and for any
w ∈ Σ \ (α ∪ β) we have Pw ∼= H2(Y ;Z).
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Proof. A domain can be thought of as a two-chain in Σ, and as such,
we can consider the boundary of a domain. Indeed, cornerless domains
are exactly those for which the boundary of the corresponding two-chain
is in the span of the [αi] and the [βj ] . In fact, the boundary ∂D of a

cornerless domain D ∈ P̃ is in ker(φ) (as the domain itself shows that the
corresponding 1-chain is a boundary).

Consider this map ∂ : P̃ → ker(φ). By definition each element of ker(φ)
bounds a domain, which is obviously cornerless, hence ∂ is onto. The kernel
of ∂ is generated by the homology class [Σ] of the surface Σ, thought of as
the domain all of whose local multiplicities are 1. The short exact sequence

(2.1) 0→ Z→ P̃ → ker(φ)→ 0

splits since all groups are free, hence P̃ ∼= Z⊕ker(φ). Now Proposition 2.3.2
completes the proof.

For any choice of w ∈ Σ \ (α ∪ β) there is a map

(2.2) nw : P̃ → Z,

which is the local multiplicity of D ∈ P̃ at w . This map induces a splitting
of the short exact sequence from Equation (2.1), whose kernel consists of
the group of periodic domains Pw .

Definition 2.3.8. In the proof of Lemma 2.3.7, we have constructed a map
from cornerless domains to H2(Y ;Z), which we shall denote

h : P̃ → H2(Y ;Z).

According to Lemma 2.3.7, the restriction of h to Pw ⊂ P̃ is an isomor-
phism.

Every two-dimensional homology class in a manifold can be represented by
an oriented surface. For three-manifolds, we can understand this construc-
tion concretely from the point of view of Heegaard diagrams, as follows.
(This construction will be used explicitly Chapter 8.) We find it convenient
to work with domains satisfying the following positivity hypothesis:

Definition 2.3.9. The domain D =
∑

imiDi is nonnegative if mi ≥ 0
for all i. For nonnegative domains we will write D ≥ 0.

Exercise 2.3.10. Find the nonnegative, cornerless domains in the Heegaard
diagram of T 3 given by Figure 2.5.

Given a non-negative cornerless domain D , we construct a surface FD and
a map f : FD → Y that represents h(D) ∈ H2(Y ;Z). As a first step, we
construct a surface-with-boundary associated to D , which maps into Σ.
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Construction 2.3.11. Let D =
∑
niDi be a non-negative, cornerless do-

main. For each elementary domain Di consider the surfaces-with-boundary

Si1, S
i
2, . . . , S

i
ni

where each Sij is homeomorphic to Dci , together with a map f ij : Sij → Di
(the latter viewed as a subset in Σ), which is surjective, maps boundary to
boundary and is a diffeomorphism on the interior Doi . Glue these pieces
together to form a topological space F0 as follows.

• If Di and Dj share an α-arc aij in their boundaries, then copies

of this interval appear in the surfaces Sik and Sj` . Identify the

interval in Sik with the corresponding interval in Sjk for all 1 ≤
k ≤ min{ni, nj}.

• Similarly, if Di and Dj share a β -arc bij in their boundaries, then

copies of this interval appear in the surfaces Sik and Sj` . Identify

the interval in Sini−k+1 with the corresponding interval in Sjnj−k+1

for all 1 ≤ k ≤ min{ni, nj}.

The map f0 : F0 → Σ is obtained by patching together the functions f ij .

(Compare also [106, Chapter 3].)

We claim that F0 is a two-manifold with boundary. Over points in the
interior of the elementary domains, F0 is homeomorphic to a union of planes,
whose number coincides with the multiplicity of the domain. Fix next a
point p in α ∪ β \ (α ∩ β), where a domain Di with multiplicity ni meets
a domain Dj with multiplicity nj , labelled so that ni ≥ nj . Over such a
point F0 consists of a union of nj planes and ni − nj half-planes. Finally,
the choices above ensure that even over p ∈ (α ∩ β), the half planes are
glued together along complete edges, so that the preimage of F consists of
a union of half-planes and planes. See Figure 2.10 for a picture.

More can be said about the structure of F0 at its boundary. There are
integers {ki}gi=1 and {`i}gi=1 associated to the cornerless domain D , defined
by

∂D =

g∑
i=1

ki[αi] + `i[βi].

The surface-with-boundary F0 constructed above has exactly
∑g

i=1(|ki| +
|`i|) boundary components: over αi , there are ki disjoint boundary compo-
nents, and they are each mapped homeomorphically to αi ; similarly, over
βi , there are `i disjoint boundary components.

Construction 2.3.12. Given a cornerless domain D , we construct a closed,
oriented surface FD , as follows. First, add sufficiently many copies of Σ
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Dj

Di
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bijni = 3
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Di
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aij
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Si2

Si1

Si3

Sj3

Si3

Si3

Si3

Figure 2.10. Surface associated to a domain. We have drawn
heree three examples of portions of domains in the Heeegaar diagrams
and the smooth surfaces over theem. The integers on the diagrams
represent loca multiplicities.

until the domain becomes non-negative; apply Construction 2.3.11 to get
f0 : F0 → Σ. Next, add copies of the attaching disks along the boundary of
F0 to obtain the surface FD . Specifically, cap off the ki resp. `i boundary
components in F0 over αi resp βi with copies of the αi - resp. βi -attaching
disk in the α-handlebody resp. β -handlebody. This construction gives a
closed surface FD containing F0 , together with a map f : FD → Y extending
the map f0 : F0 → Σ.

It is straightforward to verify that the homology class represented by f coin-
cides with the one associated to the cornerless domain as in Definition 2.3.8.
We added copies of Σ to obtain a positive domain; this clearly does not
affect the represented homology class in Y , since the Heegaard surface is
null-homologous.

Indeed, every two-dimensional homology class in a three-manifold can rep-
resented by an embedded surface. (This fact is described in detail in Propo-
sition 17.1.1 below.)
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Exercise 2.3.13. Explain how to modify the above construction of f : FD →
Y to make it an embedding.

2.4. Heegaard states and domains

Heegaard Floer homology is the homology of a chain complex associated to
a Heegaard diagram (and some further analytical choices). The generators
of this complex correspond to combinatorial objects, called Heegaard states,
which we will define presently. For pairs of Heegaard states, there are other
combinatorial objects, called domains connecting Heegaard states, which we
will also define in this section. As we will explain in Chapter 9, these domains
play an important role in the definition of the differential of the Heegaard
Floer chain complex.

Definition 2.4.1. Let (Σ,α,β) be a generic Heegaard diagram, and fix an
ordering of α = {α1, . . . , αg} and of β = {β1, . . . , βg}. A Heegaard state
is a g -tuple of points x = {x1, . . . , xg} ⊂ Σ, with the property that there is
a permutation σ : {1, . . . , g} → {1, . . . , g} so that xi ∈ αi ∩ βσ(i) . Let S(H)
denote the set of Heegaard states of H .

Clearly, a generic Heegaard diagram has only finitely many Heegaard states.

Example 2.4.2. The genus 0 Heegaard diagram for S3 has a unique Hee-
gaard state (the empty set). The standard genus 1 Heegaard diagram for
S3 also has a unique Heegaard state. More generally, the genus 1 Heegaard
diagram for L(p, q) from Example 2.1.8 has exactly p Heegaard states. The
Heegaard diagram for S1 × S2 from Example 2.1.9 is not generic. We can
perturb α and β so that they become disjoint from one another; in this
manner, we obtain a Heegaard diagram with no Heegaard states.

Exercise 2.4.3. (a) Consider the matrix M = (mi,j)
g
i,j=1 where mi,j is

the number of points in αi ∩ βj . Express the number of Heegaard states in
terms of M .

(b) Find the number of Heegaard states in the Heegaard diagram for the
three-torus T 3 from Example 2.1.13.

(c) Find the number of Heegaard states in the diagram Hn from Exam-
ple 2.1.11, as a function of n.

(d) Suppose that Y is a rational homology sphere (that is, b1(Y ) = 0 and
hence |H1(Y ;Z)| is finite), and assume that H = (Σ,α,β) is a Heegaard
diagram for Y . Let S(H) denote the set of Heegaard states of H . Show
that |S(H)| ≥ |H1(Y ;Z)|.

Heegaard states have the following interpretation in terms of Morse theory.
Let f : Y → R be a self-indexing Morse function with a unique maximum
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and minimum, with g index-1 critical points, and fix a metric h on Y .
A simultaneous trajectory is a set of g gradient flowlines connecting all the
index-1 critical points to all the index-2 critical points of f . When the metric
h is generic with respect to f , the associated Heegaard diagram is generic,
and the simultaneous trajectories are in natural one-to-one correspondence
with Heegaard states.

Having defined Heegaard states, we now consider the domains that connect
them.

Definition 2.4.4. Let x and y be two Heegaard states. A domain con-
necting x to y is a domain D =

∑
kmkDk satisfying the linear relation

(2.3) ap + cp = bp + dp +

(
1 if p ∈ x
0 otherwise

)
+

(
−1 if p ∈ y
0 otherwise

)
,

at each p ∈ αi∩βj (in the notation of Figure 2.9). The set of domains from
x to y is denoted D(x,y).

It is easy to see that if D1 ∈ D(x,y) and D2 ∈ D(y, z), then the formal
linear combination D = D1 + D2 is an element of D(x, z). Moreover, the
group D(x,x) is independent of the choice of the Heegaard state x ; in fact,

for any Heegaard state x , D(x,x) can be identified with the group P̃ of
cornerless domains, introduced in Definition 2.3.5.

Given two Heegaard states x,y , there is an obstruction ε(x,y) ∈ H1(Y ;Z)
to the existence of a domain connecting x to y , defined as follows. Suppose
the Heegaard diagram is associated to a self-indexing Morse function on Y ,
and let γx denote the simultaneous trajectory associated to the Heegaard
state x . Clearly, γx can be thought of as a one-chain in Y , with ∂γx =
(
∑g

i=1[bi]) − (
∑g

i=1[ai]), where {ai}gi=1 resp. {bi}gi=1 are the index-2 resp.
index-1 critical points in Y . Thus, if x and y are two Heegaard states,
γy− γx is a one-cycle in Y ; let ε(x,y) ∈ H1(Y ;Z) be the homology class it
represents.

The element ε(x,y) has an alternative formulation purely within the Hee-
gaard diagram. Pick paths ξi ⊂ αi for i = 1, . . . , g from x∩αi to y∩αi ; and
also pick paths ηi ⊂ βi for i = 1, . . . , g from x∩βi to y∩βi . The one-chain∑g

i=1(ξi − ηi) is clearly a cycle, whose homology class in H1(Σ;Z) depends
on the choices of paths ξi and ηi . The corresponding element ε(x,y) in the
quotient group

H1(Σ;Z)/Span({[αi], [βi]}gi=1)〉 ∼= H1(Y ;Z)

(using the isomorphism from Proposition 2.3.2), is independent of these
choices, depending only on the Heegaard states x and y .



2.5. Pointed Heegaard diagrams 47

Definition 2.4.5. Two Heegaard states x,y in H are equivalent if ε(x,y) =
0.

This relation is an equivalence relation, partitioning the Heegaard states of
a generic Heegaard diagram into equivalence classes.

Exercise 2.4.6. (a) Show the equivalence of the above two definitions of
ε(x,y).

(b) Show that for any three Heegaard states x,y, z,

ε(x,y) + ε(y, z) = ε(x, z).

(c) Consider the Heegaard diagram from Example 2.1.8. Show that the p
different Heegaard states in this example are inequivalent.

(d) Determine the equivalence classes of the Heegaard states of the Heegaard
diagram of Figure 2.5 (representing T 3 ).

(e) Exhibit two distinct Heegaard states in W2 with ε = 0. Identify all the
domains connecting them.

Proposition 2.4.7. Suppose that x,y are two Heegaard states in a generic
Heegaard diagram H = (Σ,α,β). If ε(x,y) is non-zero, then D(x,y) is
empty. If ε(x,y) = 0, then D(x,y) is an affine space for Z⊕H2(Y ;Z).

Proof. Clearly, ε(x,y) = 0 if and only if there are choices of ξi and ηi as
above so that

∑g
i=1([ξi]− [ηi]) is a homologically trivial cycle in Σ. This is

equivalent to the existence of a two-chain D with

∂D =

g∑
i=1

([ξi]− [ηi]).

It is straightforward to see that such a two-chain is a domain from x to y ,
in the sense of Definition 2.4.4.

If D(x,y) is non-empty, then the set D(x,y) is clearly an affine space for the

group P̃ of cornerless domains: Given D0 ∈ D(x,y), any other D ∈ D(x,y)
can be uniquely written as D0 +P , where P is a cornerless domain (viewed
as an element of D(x,x)). The result then follows from Lemma 2.3.7.

2.5. Pointed Heegaard diagrams

In the definition of Heegaard Floer homology, we will choose a basepoint on
the Heegaard surface. We formalize this choice as follows.
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Definition 2.5.1. A pointed Heegaard diagram is a quadruple (Σ,α,β, w)
where (Σ,α,β) is a Heegaard diagram, and w ∈ Σ \ (α ∪ β). The point w
is called the basepoint . Two pointed Heegaard diagrams (Σ, α , β , w) and
(Σ′, α ′, β ′, w′) are equivalent , if there is an orientation-preserving diffeo-
morphism f : Σ→ Σ′ between the Heegaard surfaces such that f(α) = α ′ ,
f(β ) = β ′ and f(w) = w′ .

We say that a pointed Heegaard diagram (Σ,α,β, w) represents Y if the
Heegaard diagram (Σ,α,β) represents Y . Heegaard moves have pointed
analogues. We say that α and α′ are pointed isotopic if there is a diffeomor-
phism f = f1 : Σ → Σ that is isotopic to the identity by a one-parameter
family of diffeomorphisms {ft}t∈[0,1] (f0 = idΣ ), so that α′ is the image of
α under f and ft(α) is disjoint from w for all t .

Similarly, α and α′ differ by a pointed handle slide if they differ by a
handle slide so that the pair-of-pants that connects α′1 , α1 , and α2 in the
description of the handle slide (cf. Figure 2.7) does not contain the basepoint
w .

In Definition 2.1.14 we have defined a connected sum operation on Heegaard
diagrams. Note that, although we did not explicitly express it as such, this
construction starts from two pointed Heegaard diagrams H = (Σ,α,β, w)
and H′ = (Σ′,α′,β′, w′), to form a new Heegaard diagram H#H′ . Choosing
a basepoint w′′ in the connected sum region of Σ and Σ′ (as shown in
Figure 2.6), we obtain a new pointed Heegaard diagram, which we also
denote H#H′ . There were some additional choices made in the definition:
to form the connected sum of Σ and Σ′ , we deleted small neighbourhoods of
w and w′ , identified the boundaries of those neighbourhoods, and chose w′′

in the connected sum region. Note that all of these choices give equivalent
pointed diagrams.

The connected sum H′ of H = (Σ,α,β, w) with the standard pointed genus
one Heegaard diagram for S3 is called the pointed stabilization of H ; also,
H is called the pointed destabilization of H′ .
Pointed isotopies, pointed handle slides, and pointed stabilizations (or desta-
bilizations) are called pointed Heegaard moves.

Theorem 2.5.2. Let Y be a closed, oriented three-manifold and suppose
that

H = (Σg,α,β, w), and H′ = (Σg′ ,α
′,β′, w′)

are two pointed Heegaard diagrams for Y . Then, there is a sequence of
pointed Heegaard moves that transform the first diagram into one that is
equivalent to the second.
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ww

α3

α2

α2

α3

w

α2

α3α1 α1

α1

Figure 2.11. Trading isotoping w across α1 for a sequence of
handleslides of α1 across the other curves.

Proof. This follows quickly from Theorem 2.2.6. The key point is that
an isotopy that crosses the basepoint w can be exchanged for a sequence of
handle slides and isotopies that are disjoint from w , as follows. Consider
the torus obtained by surgering out all the other α-circles α2, . . . , αg in
Σ. This gives a torus containing α1 , the basepoint w , and a collection of
2g points {pi, qi}gi=2 , where pi and qi are the centers of the disks obtained
by surgering out αi . Instead of isotoping w across α1 , we can isotop α1

around in the torus in the other direction (see Figure 2.11) without crossing
w , to obtain an equivalent diagram. Each isotopy of α1 across pi or qi can
be lifted to a handleslide in Σg , giving the desired sequence of handleslides;
see Figure 2.12.

2.6. Heegaard states and spinc structures

A Heegaard state x ∈ S(H) in the pointed diagram H = (Σ, α , β , w)
for the three-manifold Y determines an Euler structure, and hence a spinc

structure sw(x) ∈ Spinc(Y ) as follows. By fixing a self-indexing Morse func-
tion f and a Riemannian metric h on Y providing the Heegaard diagram
H = (Σ,α,β) (as it is described after Exercise 2.4.3), the Heegaard states of
(Σ,α,β) can be identified with the simultaneous trajectories of f , i.e., with
the set of g gradient flow lines connecting the g index-1 critical points with
the g index-2 critical points. In addition, the basepoint w also determines a
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pi qi

αi

α1

pi qi

αi

α1

Figure 2.12. Trading isotopies in the torus for handleslides in
the Heegaard surface. The vertical maps are surgeries that replace
αi by a pair of points pi and qi . Isotoping α1 across qi in the torus
corresponds to a handlesliding α1 over αi in Σ.

gradient flow line, now from the unique index-0 critical point to the unique
index-3 critical point of f .

Fix a Heegaard state x and consider the corresponding simultaneous trajec-
tories, together with the gradient flowline passing through w . (This latter
flow connects the minimum and the maximum of f .) Outside a small tubu-
lar neighbourhood of these g+ 1 gradient flow lines, the gradient ∇hf of f
is a nowhere zero vector field that can be extended as a nonvanishing vector
field over the g + 1 balls, since the indices of two critical points in each
ball have opposite parity. (Note that the Lefschetz number of the index-i
critical point is (−1)i .) In this manner, the Heegaard state, together with
the basepoint, determines a nowhere zero vector field on Y , well-defined up
to homotopy away from finitely many balls. This object, in turn, is an Euler
structure on Y , in the sense of Definition 1.4.1; and as such, it can be viewed
as a spinc structure. (Either by fiat, as in Remark 1.4.9; or by appealing
to the identification between these two sets from Proposition 32.3.1.) The
obove construction gives a map

(2.4) sw : S(H)→ Spinc(Y ).

In terms of the obstruction class ε(x,y) ∈ H1(Y ;Z) we have:

Lemma 2.6.1. Suppose that x,y ∈ S(H) are two Heegaard states in the
pointed Heegaard diagram H = (Σ,α,β, w). Then,

(2.5) sw(y)− sw(x) = PD(ε(x,y)).
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Σ
x

D′

D

y

αi

ai

Figure 2.13. Verifying Equation (2.5). We have drawn a disk D
in the Heegaard surface around some point x ∈ αi . Digging into the
α -handelbody, we have another disk D′ so that ∂D′ = ∂D , and the
two-sphere D∪−D′ bounds a ball containing the index 1 critical point
ai corresponding to αi .

In particular, sw(x) = sw(y) if and only if ε(x,y) = 0.

Proof. Let γx and γy denote the simultaneous trajectories corresponding
to x and y . Since away from these trajectories the vector fields of the
Euler structures corresponding to x and y can be chosen to be equal, the
difference sw(x) − sw(y) (which is a two-dimensional cohomology class on
Y ) is supported in a neighborhood of γx−γy ; thus, it must be some integral
multiple of PD(ε(x,y)).

To complete the argument, we need to compute this multiple. If x = y
then the claim obviously follows. In case x 6= y , there is a gradient flow
line in γx which is not in γy ; let D be a small transverse disk to this
flowline, intersecting it (and hence γx− γy ) transversally in a unique point.
The nowhere zero vector field vy associated to y along this disk is ∇f ,
while the nowhere zero vector field vx associated to x is ∇f only near ∂D
(assuming ∂D is not in the small neighbourhood of the flowline where ∇f
will be changed to get the nowhere zero vector field). Since the two vector
fields are equal on ∂D , and (after fixing a trivialization of TY ) both give
maps to S2 , we can consider their degree difference and it follows that

sw(x)− sw(y) = (degD(vx)− degD(vy))PD(γx − γy).

Consider now another disk D′ with the same boundary as D , and with the
property that D ∪D′ bounds a 3-ball in Y containing the index-1 critical
point of f which is the endpoint of the gradient flowline to which D was
normal. On D′ the vector field vx can be chosen to agree with ∇f ; hence
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(since vx is nowhere zero) we get that degD(vx) = −degD′(∇f). (See
Figure 2.13.) Therefore

degD(vx)− degD(vy) = −degD′(∇f)− degD(∇f),

and since ∇f vanishes at the index-1 critical point with Lefschetz number
−1, the above difference is equal to 1, and Equation (2.5) is verified.

A similar formula describes the change of the map s when the basepoint
w is moved. To this end, suppose that w1 and w2 are two base points on
the two sides of the α-curve αi ; that is, there is a path ε interval in Σ
joining w1 and w2 that intersects αi transversally once and is disjoint from
all the other α-curves. As the complement of the α-curves is connected,
the two endpoints w1 and w2 of ε can also be connected in the complement
of the α-curves, hence we get a simple closed curve δi ⊂ Σ that intersects
αi once and is disjoint from all the other α-curves. Although this curve
δi is not unique, its associated homology class [δi] ∈ H1(Y ;Z) is uniquely
determined; we denote the homology class by α∗i .

Lemma 2.6.2. For the two basepoints w1, w2 described above, and for any
fixed Heegaard state x ∈ S(H) of the diagram (Σ,α,β) we have

sw1(x)− sw2(x) = PD(α∗i ),

where Poincaré duality is taken in the three-manifold Y .

Proof. As above, we think of the Heegaard diagram as specified by a
self-indexing Morse function f , and we will consider gradient trajectories
for f on Y , equipped with an auxiliary Riemannian metric.

The difference sw1(x)− sw2(x) of the two spinc structures is a cohomology
class that is supported near γw1−γw2 , where for i = 1, 2, γwi is the grading
flowline through wi . (Note that γi connects the minimum of f to the
maximum of f .)

We claim that in Y , the closed curve γw1−γw2 is homotopic to a curve δi in
Σ that is crosses αi exactly once and is disjoint from the αj for j 6= i . To see
this, connect w1 to w2 by a path ε in Σ that crosses only αi , and another
path η in Σ that is disjoint from all the α . Thus, δi = ε− η . The gradient
flowlines from η into the maximum provide a homotopy between between
δi and γw1 − γw2 . It follows now that γw1 − γw2 represents the homology
class α∗i ; and hence, as in the proof of Lemma 2.6.1, sw1(x) − sw2(x) is
a multiple of PD[α∗i ] . In computing the multiple, we argue as before: we
choose a small disk D transversal to γw1 and D′ with the same boundary
and with the property that D ∪D′ bounds a 3-ball containing the index-0
critical point. Similar degree calculations as before imply the result.
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Figure 2.14. Cancellation of index one and zero in dimension
two. On the left, we have illustrated the gradient vector field around
a gradient flowline from an index one to and index zero critical point.
On the right, we have illustrated a new flow in the disk with no zeros,
which agrees with the above flow on the boundary of the disk.

2.7. Heegaard states and vector fields

The assignment from Heegaard states to spinc structures can be further
refined to give a grading of Heegaard states by isotopy classes of nowhere
vanishing vector fields over Y , denoted gr : H → Vec∗(Y ). We explain this
construction here, following Gripp and Yang [138]. (Note that Gripp and
Yang describe the grading set as isotopy classes oriented two-plane fields,
by analogy with Seiber-Witten theory [63]. These latter objects are in
one-to-one correspondence with nowhere vanishing vector fields, by taking
orthogonal complements.)

The spinc structure was constructed by noting that the zeros of the gradient
vector field can be cancelled in pairs in a neighborhood of the simultaneous
trajectories γx ∪ γw associated to the Heegaard state x and the basepoint
w , and observing (either by definition or by appealing to Proposition 32.3.1)
that the underlying spinc structure associated to the non-vanishing vector
field is independent of the manner in which this cancellation is done. To
refine the construction to Vec∗(Y ), we must specify exactly how we cancel
the zeros of the gradient vector field in pairs. This must be specified with
care, since there is a choice on how to extend a nowhere vanishing vector
field from a two-sphere over a three-ball: the space of these extensions is
parameterized by π3(S2) ∼= Z .

We describe first the cancellation of index 1 and index 2 critical points,
which happens in a neighborhood of γx ; and then return to the cancellation
of the index 0 and 3 critical points.

As a warm-up, we consider the cancellation of index 0 and 1 critical points
in dimension 2. To this end, consider a gradient flow connecting an index 0
and index 1 critical point, as pictured on the left in Figure 2.14. As we know
from the Lefschetz numbers, the map S1 → S1 obtained by restricting to
the boundary disk has degree zero; this is also clear from the picture. Thus,
the vector field can be replaced by the non-vanishing vector field shown on
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B

A

Figure 2.15. Cancel index one and index two critical points (in
dimension three).

the right. Of course, there is a unique extension up to homotopy, since the
set of extensions is parameterized by π2(S1) = 0.

With the warm-up in hand, we turn to the cancellation of index one and
two critical points. To this end, fix a generic gradient flowline γ connecting
an index one critical point a and index two critical point b . We construct

a neighborhood of γ wherein ~∇f is diffeomorphic to the vector field in
Figure 2.14 (thought of as lying the xy plane) plus z ∂

∂z . More precisely, we
find a two-manifold A containing γ with the following properties:

(A-1) ~∇f is tangent to A .

(A-2) In a neighborhood U of A , at each point of U \A , ~∇f points away
from A .

(A-3) The restriction of ~∇f to A is diffeomorphic to the index zero and
one picture from Figure 2.14

The two-manifold A is a neighborhood of union of points that flow into
a under the gradient flow: the stable manifold of a . In a Morse chart
around a , the subspace A is a disk. In a regular neighborhood U of γ ,
the unstable manifold extends to a disk whose boundary is an arc in ∂U
and the union of the two flowlines into b . (See Figure 2.15.) Our manifold
A is obtained by extending the unstable manifold past the boundary, so

that it is still ~∇f -invariant. Properties (A-1) and (A-2) follow from the

fact that A is ~∇f -invariant. Property (A-3) follows from the Morse lemma.
(In Figure 2.15, we have illustrated both the stable manifold of a and the
unstable manifold B of b .)

The above properties state that ~∇f near γ is diffeomorphic to the suspen-
sion of the flow obtained by the index zero and one cancellation. Thus, we
can replace the gradient vector field near γ by the suspension of the nowhere
vanishing vector field that appeared in the index zero and one cancellation.

We now turn to the modification in a neighborhood of the gradient flowline
γw from the index zero critical point, passing through w , and going to the
index three critical point. The Morse lemma gives the picture of the gradient
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Figure 2.16. Cancel index zero and index three critical points.

flows at the two endpoints. This flow is extended throughout the path to
the flow illustrated on the left in Figure 2.16. Specifically, although that is
a two-dimensional picture – an index zero and index two critical point in
the plane – it can be rotated through the vertical axis to describe a flow in
the three-ball.

That flow in turn agrees on the boundary of the disk with a different two-
dimensional flow shown on the right of Figure 2.16. Once again, there are
two transverse zeros of the vector field in the disk. Rotating the picture
in three dimensions through the (indicated) vertical axis gives a new flow
which vanishes the circle obtained by rotating the two zeros in the plane.
To obtain a nowhere vanishing vector field, we add a vector normal to the
pictured surface, pointing out from the plane to the left, vanishing along the
axis of rotation, and pointing into the plane to the right – i.e. we can take
this to be the vector field generating rotation through the vertical axis.

To state the properties of this assignment, we will refer to the Hopf vector
field on S3 . This is the vector field generating the one-parameter family
of diffeomorphisms of S3 = {(w, z) ∈ C2

∣∣|w|2 + |z|2 = 1} specified by

t× (w, z) 7→ (eitw, eitz).

For the statement, recall that if H is a genus g pointed Heegaard diagram,
its stabilization H′ is the genus g + 1 diagram obtained by forming the
connected sum of H with the standard genus one Heegaard diagram for S3 .
There is an induced one-to-one correspondence S(H) ∼= S(H′).
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Proposition 2.7.1. The assignment gr : S(H) → Vec(Y ) satisfies the fol-
lowing properties:

(gr-1) The nowhere vanishing vector field gr(x) represents the spincc equiv-
alence class sw(x).

(gr-2) Suppose that H′ is obtained from H by a single stabilization, and
gr : S(H) → Vec∗(Y ), gr′ : S(H′) → Vec∗(Y ) denote the corre-
sponding maps. Then, under the one-to-one correspondence x→ x′

between S(H) and S(H′), we have that gr(x) = gr′(x′).

(gr-3) For the single Heegaard state x0 of S3 for the standard genus one
Heegaard diagram for S3 , gr(x0) is the Hopf vector field on S3 .

Proof. Property (gr-1) is immediate from the definitions. Property (gr-2)
follows from the fact that the vector field replacing the cancellation of index
1 and 2 zeros of the gradient vector field is isotopic to the gradient vector
field after the two critical points are cancelled. In view of Property (gr-2),
it suffices to show that if we equip S3 with its height function, i.e. with a
single index 0 and index 3 critical point, and cancel those two zeros in a
neighborhood of some gradient flowline through a point w in the Heegaard
sphere, the resulting vector field is isotopic to the Hopf vector field. This fol-
lows readily from an explicit picture of the Hopf field; see for example [135,
Figure 2.31].

Remark 2.7.1. In fact, the above proof shows that for the genus zero Hee-
gaard diagram for S3 , the grading of the unique (empty) Heegaard state is
the Hopf vector field on S3 .

2.8. Bounding the number of Heegaard states

Heegaard states are of fundamental importance in Heegaard Floer homology:
they will correspond to the generators of the chain complex. In this section,
we give a few remarks about their topological content.

Given a closed, oriented, connected three-manifold Y , let N(Y ) denote the
minimal number of Heegaard states among all Heegaard diagrams represent-
ing Y . For example, N(S1 × S2) = 0. It follows from Corollary 2.3.3 that
N(Y ) ≥ |H1(Y ;Z)| .

Proposition 2.8.1. For a closed, connected three-manifold Y , N(Y ) = 1
holds if and only if Y ∼= S3 .
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α1

α2
α′2

β1

Figure 2.17. If α1 meets only β1 , and β1 meets α2 as shown,
we can form a handle slide that eliminates the intersection
point with β1 but does not change the number of Heegaard

states.

Proof. One direction of the claim is obvious: see Figure 2.2 for a Heegaard
diagram of S3 with one Heegaard state.

The proof of the converse proceeds by induction on the genus of the Heegaard
diagram. The case g = 1 is again obvious.

Let x = {x1, . . . , xg} be the unique Heegaard state in H = (Σ,α,β). We
can label the curves so that xi ∈ αi ∩ βi . Clearly, the hypothesis that
N(Y ) = 1 ensures that αi and βi intersect in a single point. We claim that
there is some αi that does not intersect any βj with j 6= i , for otherwise
we would be able to construct a Heegaard state y 6= x via the following
procedure. Suppose that α1 intersects both β1 and another β -curve that
we can label β2 . By assumption, α2 intersects both β2 and a different β -
curve which is either β1 or it is a new one, which we can label β3 . Proceeding
in this manner, we will eventually find a sequence of intersection points in
α1 ∩ β2, α2 ∩ β3, . . . , αk ∩ βj for some j < k . There is a Heegaard state
y = {y1, . . . , yg} with

yi ∈


αi ∩ βi+1 for all i ∈ {j, . . . , k − 1}
αi ∩ βj for i = k
αi ∩ βi for i 6∈ {j, . . . , k}.

Clearly, x 6= y .

The above argument shows that, after renumbering, we can assume that α1

is disjoint from all βj with j > 1, and it meets β1 in a single point. We
claim that after possibly handle sliding other αi over α1 , without changing
the number of Heegaard states, we can assume that also β1 meets only α1 .
We see this as follows. Suppose that β1 meets α1 in one point, and it also
meets some other curve αi . After further renumbering if needed, we can
find an arc in β1 whose interior is disjoint from all αi and whose endpoints
are in α1 and α2 . Handle sliding α2 over α1 along this arc is easily seen to
leave the number of Heegaard states unchanged, and to decrease the number
of intersection points of β1 with αi for i > 1. Thus, repeating this step as
many times as needed, we obtain a new diagram with one Heegaard state
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and which can be destabilized. Clearly, the destabilized diagram also has a
unique Heegaard state, and the result follows by induction.

Remark 2.8.2. According to Proposition 2.8.1, there is only one three-
manifold with N(Y ) = 1. This has the following generalization, due to
Greene and Levine [41]: for any m ≥ 1, there are only finitely many rational
homology three-spheres Y with N(Y ) = m.

It is interesting to consider three-manifolds for which N(Y ) = |H1(Y ;Z)| ,
the so-called strong L-spaces; see [41]. Examples include all lens spaces,
and more generally, branched double-covers of alternating knots [39]. The
fundamental group of such a three-manifold is heavily constrained [65].



Chapter 3

Heegaard diagrams
and knots

Just as Heegaard diagrams represent closed three-manifolds, Heegaard di-
agrams with two basepoints represent knots in three-manifolds. We study
this construction in the present chapter, formalizing “doubly-pointed Hee-
gaard diagrams” in Section 3.1 and formulating the Heegaard moves that
connect them. In Section 3.2 we explain how to construct such diagrams in
several particular cases. In Section 3.3, we explain the Heegaard diagrams
for describing surgeries on a knot, and Section 3.4 is devoted to present
double branched covers from this perspective.

3.1. Doubly-pointed Heegaard diagrams of knots

For our present purposes, a knot K is a smoothly embedded, closed, con-
nected one-dimensional submanifold in a three-manifold Y . A knot endowed
with a preferred orientation will be written ~K .

Definition 3.1.1. A doubly-pointed Heegaard diagram is a 5-tuple
(Σ,α,β, w, z), where (Σ,α,β) is a Heegaard diagram and w, z ∈ Σ\(α∪β)
are two distinct points. Two doubly-pointed Heegaard diagrams are equiva-
lent if there is an orientation preserving diffeomorphism between them. The
doubly-pointed Heegaard diagram is generic if the α- and β -curves inter-
sect transversally; unless otherwise stated, we will always assume this extra
property.

A doubly-pointed Heegaard diagram specifies a three-manifold Y (forgetting

the two basepoints), and the two basepoints specify an oriented knot ~K ⊂ Y .

59



60 3. Heegaard diagrams and knots

α

β

α

β

w

z

w
z

Figure 3.1. Doubly-pointed Heegaard diagrams for the the un-
knot and the trefoil.

The knot is constructed as follows. First, draw an embedded, oriented arc
ξ in Σ \ α that goes from w to z . (This can be done since Σ \ α is
connected.) Similarly, draw an oriented arc η in Σ \ β that goes from z to
w . Note that ξ and η might intersect each other. Thinking of ξ and η as
arcs in {0} ×Σ ⊂ [−1, 1]×Σ ⊂ Y , we can push the interior of ξ down into
(−1, 0)×Σ, and the interior of η up into (0, 1)×Σ, to obtain two embedded

arcs ξ′ and η′ in [−1, 1]×Σ, whose union ~K is an embedded, oriented, closed
curve in [−1, 1]×Σ. Although the arcs ξ and η are not unique (even up to
isotopy) on Σ, different choices are isotopic in the respective handlebodies.

Definition 3.1.2. Let H = (Σ,α,β, w, z) be a doubly-pointed Heegaard di-
agram, and let Y be the associated three-manifold equipped with an oriented

knot ~K ⊂ Y constructed above. We say that (Σ,α,β, w, z) represents the

pair (Y, ~K).

Notice that the roles of w and z are not symmetric. If (Σ,α,β, w, z) rep-

resents (Y, ~K), then (Σ,α,β, z, w) represents the same three-manifold with

the orientation-reversed knot (Y,− ~K).

When the Heegaard diagram arises from a Morse function, the knot can be
viewed as the union of the two gradient trajectories (connecting the index
0 and index 3 critical point) through w and z .

Example 3.1.3. See Figure 3.1 for doubly-pointed Heegaard diagrams rep-
resenting the unknot and the trefoil. In Figure 3.2, we verify that the second
doubly-pointed Heegaard diagram in fact represents the trefoil.

Exercise 3.1.4. (a) Construct a doubly-pointed Heegaard diagram for a
knot K ⊂ S1 × S2 with the property that the homology class represented by
K is a generator of H1(S1 × S2;Z) ∼= Z.

(b) Construct a doubly-pointed Heegaard diagram for a knot K ⊂ S1 × S2

with the property that the homology class of K is twice a generator for
H1(S1 × S2 : Z) ∼= Z.
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α
w

z

β

ξ
η

Figure 3.2. Drawing the trefoil on its doubly-pointed diagram.
The arcs ξ and η connecting w and z in the complement of α and β
are drawn; their union is evidently the (right-handed) trefoil

α
w

βz

Figure 3.3. Doubly-pointed Heegaard diagram for the Figure-8
knot.

Proposition 3.1.5. Let Y be a three-manifold and ~K ⊂ Y be an oriented
knot. Then there is a doubly-pointed Heegaard diagram (Σ, α , β , w, z) that

represents (Y, ~K).

Proof. Consider the complement Y \ ν(K) of an open tubular neighbour-
hood ν(K) of the knot K and fix a self-indexing Morse function f on this
three-manifold with values in [0, 2.5], which admits a unique minimum, and
with the property that f−1(2.5) is the torus boundary. This function gives
a handle decomposition of Y \ ν(K). The boundary Σ of the union of the
single 0-handle and the g 1-handles contains the belt circles α1, . . . , αg of
the 1-handles, and the attaching circles β1, . . . , βg−1 of the 2-handles. When
gluing back the closed tubular neighbourhood of K to Y \ ν(K) to get Y ,
we attach the last 2-handle along the meridian of the knot. Choosing this
attaching circle as βg , and putting two basepoints w, z to the two sides

of βg gives the desired doubly-pointed Heegaard diagram for (Y, ~K). (The
orientation of K decides to which side of βg the basepoint w is positioned.)

The resulting Heegaard diagram represents (Y, ~K).

It is natural to consider doubly-pointed Heegaard moves for doubly-pointed
Heegaard diagrams, consisting of isotopies that do not cross either basepoint
(w or z ), handle slides where the pairs-of-pants contain neither w nor z ,
and arbitrary stabilizations and destabilizations. Theorem 2.2.6 has the
following refinement in the doubly-pointed case:
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Theorem 3.1.6. Let Y be a closed oriented three-manifold equipped with

an oriented knot ~K ⊂ Y . For any two doubly-pointed Heegaard diagrams

representing (Y, ~K), there is a sequence of doubly-pointed Heegaard moves
that transforms the first diagram into one that is equivalent to the second.

A proof will be given in Chapter 31.

3.2. Constructions of doubly-pointed Heegaard
diagrams

We give here a few handy constructions of doubly-pointed Heegaard dia-
grams for knots.

3.2.1. Heegaard diagrams from knot projections. Fix a knot K ⊂
R3 ⊂ S3 , with a generic decorated projection (P, p) to R2 ⊂ R3 . We give
an algorithm for constructing a doubly-pointed Heegaard diagram from this
data.

Thinking of K as contained in R3 , the projection is given by (x, y, z) 7→
(x, y). Singularize the knot to obtain a planar graph X in the (x, y)-plane,
which we think of as the locus of points with z = 0. Let Uβ = ν(X) be a
neighborhood of this singular knot. We can think of K as supported inside
Uβ . The Heegaard surface Σ = −∂Uβ will have genus g = n + 1, where n
denotes the number of crossings in the knot projection.

The intersection Σ∩ {z = 0} consists of n+ 2 circles, corresponding to the
connected components of R2\X . We will delete one of these circles, and the
remaining ones will comprise the α-circles. Indeed, two of the components
of R2 \X are adjacent to the decoration p ∈ P ; we discard one of the two
corresponding circles.

To construct the β -circles, we proceed as follows. Add n β -circles that
correspond to crossings in the knot diagram. Specifically, we can find a
neighborhood of each crossing in X that meets Σn+1 in a sphere with four
disks removed; the crossing governs the choice of the β -circle, as shown in
the top part of Figure 3.4.

Let βg be the meridian for the knot that is supported in a neighborhood
of the fixed point p ∈ P : i.e. the neighborhood of the edge meets Σ in
an annulus S1 × [0, 1], and we choose βg to be a curve representing the S1

factor.

Finally, choose the basepoints w and z to lie in a small neighborhood of
βg , one on each side of βg ; see also Figure 3.4. (The orientation of the knot
will specify the sides for w and z .) See Figure 3.5 for a global example.
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p
zw

Figure 3.4. From knot projections to Heegaard diagrams, lo-
cally. The crossing on the top left is transformed into part of a Heegaard
diagram indicated on the top right. The red locus corresponds to z = 0
(so they are components of α , except if some of the edges contain the
point p ∈ P ). The blue curve is the corresponding β curve. Similarly,
the marked point p on the bottom left is transformed to the portion of
the Heegaard diagram in the bottom right.

z

w

Figure 3.5. From a knot projection of the trefoil to its Hee-
gaard diagram.

Note that we are using an orientation on Σ which is opposite to the one it
inherits as the boundary of a regular neighborhood of the graph X .

The resulting diagram is called the doubly-pointed Heegaard diagram asso-
ciated to the decorated knot projection (P, p).

Proposition 3.2.1. There is a one-to-one correspondence between the Kauff-
man states of a decorated knot projection and the Heegaard states of the
Heegaard diagram associated to the projection.

Proof. The meridional β -curve βg intersects a unique α-curve in a single
point, hence the component of a Heegaard state on βg is unique. The other
β -curves, which are associated to crossings c in the projection, intersect at
most four α-curves, which in turn corresponding to the four regions adjacent
to the crossing. Thus, the βc component of a Heegaard state associates one
of the four c-adjacent regions to c . The constraints on a Heegaard state
(e.g. that each αi contains exactly one component of the Heegaard state)
correspond to the constraints on a Kauffman state (e.g. that unmarked
each region is associated to exactly one crossing). In effect, we have given a
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map from Heegaard states to Kauffman states, which is easily seen to be a
bijection.

Exercise 3.2.2. (a) Show that the doubly-pointed Heegaard diagram asso-

ciated to a decorated knot projection for ~K ⊂ R3 ⊂ S3 indeed represents

(S3, ~K), in the sense of Definition 3.1.2.

(b) Suppose that P1 and P2 are two knot diagrams that differ by any of the
three Reidemeister moves (away from the basepoint p). Find doubly-pointed
Heegaard moves that connect their associated Heegaard diagrams.

3.2.2. Heegaard diagrams from plat closures of knots. A plat rep-
resentation of a knot is a knot diagram in R2 , equipped with an R-valued
function, called the “height function” (which, in practice, we think of as
given by the y -coordinate), whose restriction to the knot projection has n
global maxima and n global minima, and no further critical points. Thus,
such a diagram is represented by n caps on top (representing the n max-
ima) connected via some braid to n cups on the bottom (representing the
minima). Every knot has such a representation.

A knot K is called an n-bridge knot if it can be represented by an n-plat,
but it cannot be represented by a k -plat for k < n . Clearly the unknot is
the only 1-bridge knot. The 2-bridge knots are classified by their branched
double-covers, which are lens spaces [123].

We wish to use the plat description to construct a doubly-pointed Heegaard
diagram for K . Consider the sphere S2 with a linearly arranged collection
of points p1, q1, p2, q2, . . . , pn, qn . Let P be the planar surface obtained by
cutting out small disks Dpi and Dqi about each of pi and qi . Consider next
the configuration of disjoint embedded closed curves γ = γ1, . . . , γn in P ,
chosen so that for i = 1, . . . , n − 1 the curve γi encircles both pi and qi
(and no other pj or qj ); and an additional circle γn encircles only qn . Next,
place two basepoints w0 and z0 on either side of γn . Our Heegaard surface
Σ is obtained by attaching cylinders connecting the boundary component
of P corresponding to pi with the boundary component corresponding to
qi . The braid can be thought of as a diffeomorphism φ : P → P . Let β be
the image of γ under φ , and choose basepoints w = φ(w0) and z = φ(z0).
To determine the α-circles, draw an arc from pi to qi . Let αi be the closed
circle in Σ obtained by closing off the arc inside the cylinder connecting Dpi

to Dqi . The data (Σ,α,β, w, z) is a doubly-pointed Heegaard diagram for
K ⊂ S3 . See Figures 3.6 and 3.7; see also [34, Figure 12.32].

Note that the above Heegaard diagram can always be destabilized, to obtain
one of genus n− 1.
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γ2

β2
β1

P

γ1

Figure 3.6. Constructing a Heegaard diagram for the trefoil
from a plat. The plat is illustrated on the top. Draw the planar
diagram P with curves γ1 and γ2 on the left; pushing these curves down
along the braid (middle two pictures), we end up with a diffeomorphic
diagram P with curves β1 and β2 on the right.

α2

β1

α1 β2

w
z

Figure 3.7. Heegaard diagram for the trefoil knot. Completing
the diagram from Figure 3.6, we obtain this doubly-pointed Heegaard
diagram for the trefoil.

Exercise 3.2.3. (a) Destabilize the diagram in Figure 3.7 to find a genus
1 doubly-pointed Heegaard diagram for the trefoil.

(b) Generalize the above construction to give a genus 1 doubly-pointed Hee-
gaard diagram for the (2, 2n+ 1) torus knot, for all n ∈ Z.

3.2.3. Connected sum. The doubly-pointed Heegaard diagram of the
connected sum K1#K2 can be easily determined from the diagrams Hi =
(Σi,αi,βi, wi, zi): perform the connected sum of the two diagrams (as in
Definition 2.1.14) at the basepoints z1 and w2 .

3.2.4. Knots on genus 1 diagrams. Let H be a handlebody and a a
union of n disjoint arcs in H , whose endpoints lie on ∂H . We say that
a is a collection of n unknotted arcs if there is an isotopy of a fixing the
boundary that takes a to n disjoint arcs in ∂H .

Fix a knot K ⊂ Y . A (g, n) representation of K is a genus g Heegaard
splitting for Y so that K meets the two handlebodies in n unknotted arcs.
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w z

α2

β1

α1
z1

w1 z2

w2

β2

α1

β1

α2

β2

Figure 3.8. Connected sums of knots. Starting from two doubly-
pointed Heegaard diagrams on the top (both representing the right-
handed trefoil T2,3 ), we form their connected sum on the bottom (rep-
resenting T2,3#T2,3 ).

If K ⊂ Y has a (g, n) representation, then it is called a (g, n) knot. For
example, if K ⊂ S3 has bridge number n , then K is a (0, n) knot.

Exercise 3.2.4. (a) Show that for n > 1, a (g, n) knot is also a (g+1, n−
1)-knot.

(b) Show that a (g, 1) knot can always be represented by a doubly-pointed
Heegaard diagram of genus g .

An interesting class of knots are the (1, 1) knots in S3 ; these are the knots
that can be represented on a genus 1, doubly-pointed Heegaard diagram
(Σ, α, β, w, z), where α and β are isotopic (via an isotopy that might cross
the basepoints) on the genus one surface Σ = T 2 to two curves that intersect
in exactly one point.

All 2-bridge knots are (1, 1)-knots. Another family of (1, 1)-knots are given
by torus knots. The knot K = Tp,q has a (1, 1) representation, as follows.
Draw K on the standard torus, thought of as the Heegaard surface for a
genus one Heegaard splitting of S3 , divide K into two intervals, and push
them into the two (genus one) handlebodies.

For more on (1, 1) knots, see [32, 112, 110].

Example 3.2.5. The torus knot T2,2n+1 can be given by the (1,1)-diagram
shown in Figure 3.9.

Example 3.2.6. The torus knot T3,4 can be given by Figure 3.10. Indeed,
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n

2n

w z
n

2n + 1

2n

n + 11

n + 1

2n + 1

Figure 3.9. A (1, 1) diagram for the torus knot T2,2n+1 in S3 .
The left and right sides of the rectangle are identified with a shift by n ,
and these two sides form the (red) α -circle. Under this gluing, the blue
arcs glue to togeth to form a signle circle, the β -circle.
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Figure 3.10. A (1, 1) diagram for the torus knot T3,4 in S3 . We
have drawn two pictures: in the left diagram the left and right arc are
identified with a shear, while on the right, they are identified directly.
As before, the left sides is the (red) α -curve, while the blue arcs glue
together to form the β -curve.
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Figure 3.11. A (1, 1) diagram for the torus knot Tn,n+1 with
n ≥ 3 in S3 . Again, on the left the identification is made with a shear,
while on the right it is not.

.

this figure generalizes to a diagram for the family Tn,n+1 of torus knots for
any n ∈ N (with n ≥ 3), as shown by Figure 3.11.

Exercise 3.2.7. (a) Find genus 1 doubly-pointed Heegaard diagrams that
represent the torus knots Tn,kn+1 (k, n ∈ N and both at least 2) and T3,5 .
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z

w

α

β

Figure 3.12. A (1, 1) diagram for the knot 942 in S3 .
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Figure 3.13. A (1, 1) diagram for the twist knot Twn with n ≥ 1
in S3 . For n = 1 we recover the diagram of the right-handed trefoil
knot T2,3 , and for n = 2 we have a diagram for the Figure-8 knot (41

in Rolfsen’s table).

.

(b) Show that the knot in Figure 3.12 is neither a 2-bridge knot nor a torus
knot.

(c) Show that the (1,1)-diagram of Figure 3.13 presents the twist knot Twn
(where Tw1 is the right-handed trefoil knot and Tw2 is the Figure-8 knot).

Although we typically restrict our attention to knots in S3 , there is an
interesting class of (1, 1) knots in lens spaces: take the standard genus 1
Heegaard diagram (Σ, α, β) for the lens space L(p, q) (as in Example 2.1.8),
and fix a basepoint w ∈ Σ \ α ∪ β . There are p different regions where we
can put z , giving rise to p different knots Ki ⊂ L(p, q) for i = 1, . . . , p .
These knots are called simple knots; see for example [48].
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α

β

Figure 3.14. A doubly-pointed Heegaard diagram for a simple knot in
the lens space L(11, 2). The two dots represent the basepoints.

Exercise 3.2.8. (a) Show that for a (1, 1) knot, the knot group (i.e. the
fundamental group of the complement of the knot) has a presentation with
two generators and one relation.

(b) Consider the simple knot in the lens space pictured in Figure 3.14. Write
down an explicit presentation of its knot group (with two generators and one
relation).

(c) Show that for fixed relatively prime integers (p, q) with 1 ≤ q < p,
the p different simple knots represent the p different homology classes in
H1(L(p, q);Z).

3.3. Heegaard diagrams for surgeries

We will now describe how to draw the Heegaard diagram for surgery on a
knot K in a three-manifold Y . To this end, let

H = (Σ, {α1, . . . , αg}, {β1, . . . , βg−1, β
∗
g})

be a Heegaard diagram for a three-manifold Y , with a distinguished β -
curve, labeled β∗g . There is an induced knot K = K(β∗g ) ⊂ Y supported in
Uβ ⊂ Y , with the following two properties:

• K is disjoint from the attaching disks D1, . . . , Dg−1 for β1, . . . , βg−1

• K represents the core of the solid torus obtained by removing
neighborhoods of D1, . . . , Dg−1 .

Given an orientation ~K on K(β∗g ), a doubly-pointed Heegaard diagram

representing ~K is given by adding w and z on the two sides of β∗g .

Disregarding β∗g , the data (Σ, {α1, . . . , αg}, {β1, . . . , βg−1}) specifies a han-
dle decomposition of the three-manifold with (torus) boundary M = Y \
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ν(K): start from the handlebody determined by α , and attach 2-handles
along the g−1 β -curves. Thus, the various choices for βg (so that {β1, . . . , βg}
form a complete set of attaching circles) specify Heegaard diagrams for the
various Dehn fillings of M . Indeed, Σ \ ν(β1 ∪ · · · ∪ βg−1) is a genus one
surface with 2g − 2 boundary components, that is naturally identified with
a subset T0 of the torus boundary of M with 2g − 2 disks removed. This
gives a correspondence between filling curves λ for M inside T0 and choices
of βg . Isotopies in ∂M between curves in T0 can be followed by handle
slides and isotopies of the resulting choices for βg . In particular, given
(Σ, {α1, . . . , αg}, {β1, . . . , βg}), we can view βg as specifying a meridian for
the knot K(βg). A different choice of attaching circle λg that meets βg
transversally in one point corresponds to a framing of K ⊂ Y . If λg cor-
responds to one framing, any other framing can be obtained by twisting
λg some number of times in the direction specified by βg , resulting in the
curve γ . In conclusion, when replacing β∗g of H with γ , we get a Hee-
gaard diagram Hλ = (Σ, {α1, . . . , αg}, {β1, . . . , βg−1, γ}) for the surgered
three-manifold Yλ(K(β∗g )).

Recall that K ⊂ S3 , has a distinguished distinguished framing λ0 , the
Seifert framing (Definition 1.2.12), which is characterized by the property
that b1(S3

λ(K)) = 1. (All other Dehn fillings Y of S3 \ ν(K) have b1(Y ) =
0.) Therefore we can find λg representing this distinguished framing on a
Heegaard diagram, by demanding that [λg] lies in the span of [α1], . . . , [αg] .
(See, for example, Proposition 2.3.2.) Now a diagram for S3

n(K) can be
given by starting with H so that K = K(β∗g ) and choose γ so that it is
homologous to λ0 + nβ∗g .

We have shown how to get Heegaard diagrams for surgeries on a knot, when
the knot is specified by a distinguished β -circle. We show now how to
get, in turn, a Heegaard diagram with distinguished β -circle in terms of a
doubly-pointed Heegaard diagram

H = (Σ, {α1, . . . , αg}, {β1, . . . , βg}, w, z)

for ~K . Stabilize Σ, if necessary, to obtain a new Heegaard surface Σ′ , by
attaching a 1-handle to Σ with feet near w and z , choose βg+1 supported
inside the one-handle, and construct αg+1 out of two arcs, one of which runs
thorough the one-handle, and the other one connects w and z in Σ\α . This
gives the desired Heegaard diagram H′ = (Σ′, {α1, . . . , αg+1}, {β1, . . . , βg, β

∗
g+1})

for Y with β∗g+1 distinguished. (See Figure 3.15 for an illustration.) Clearly,

the knot K ⊂ Y specified by H is equivalent to the knot K(β∗g+1) specified

in the stabilized Heegaard diagram H′ .

Example 3.3.1. By applying the above algorithm to the genus 1 Heegaard
diagram of the left-handed trefoil T (which can be derived from the diagram
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w z

β∗g+1

αg+1

H H′

Figure 3.15. Constructing a diagram with distinguished β -
curve from a doubly-pointed Heegaard diagram. A portion of
the doubly-pointed Heegaard diagram H is shown on the left; its stabi-
lization H′ , with distinguished β -circle β∗g+1 , is shown on the right.

.

of T2,3 in Figure 3.2) we get the diagram of Figure 2.4, showing that the
3-manifold Wn (defined in Example 2.1.11) is diffeomorphic to S3

n−4(T ).

Exercise 3.3.2. (a) Show that W3 is diffeomorphic to the Poincaré sphere
Σ(2, 3, 5), and prove that π1(W3) has order 120.

(b) Consider the simple knot from Figure 3.14. Show that its complement
is diffeomorphic to the complement of some knot K in S3 . Draw this knot
K .

3.4. Branched double-covers

The branched double-cover construction can be successfully applied not only
in constructing interesting three-manifolds, but also in studying knots and
their various properties. It is therefore important to get suitable Heegaard
diagrams for these three-manifolds.

The branched double-cover of a genus g surface branched at 2n points is a
surface of genus 2g+n−1. Similarly, the branched double-cover of a genus g
handlebody branched at n unknotted arcs is a genus 2g+n−1 handlebody.
It follows that the branched double-cover along a (g, n) knot admits a genus
2g+n−1 Heegaard decomposition. In particular, the double branched-cover
of a (1, 1)-knot always admits a genus 2 Heegaard decomposition.

We can describe branched double-covers along a knot K ⊂ Y in terms
of Heegaard diagrams, as follows. Let (Σ,α,β, w, z) be a doubly-pointed

Heegaard diagram for K ⊂ Y . Let f : Σ̃ → Σ be the branched double-
cover of Σ at the two points w and z , inherited from the branched double-
cover Σ(K) → Y . Notice that since the curves αi and βj bound disks

in Y , eash of these curves will lift to two disjoint curves on Σ̃. Indeed,
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(Σ̃, f−1(α), f−1(β), f−1(w), f−1(z)) is a doubly-pointed Heegaard diagram
for the branched double-cover of Y along K .

Exercise 3.4.1. Consider the double branched cover of S3 along the alter-
nating torus knot T2,2n+1 . Pull back the Heegaard surface and the diagram
of T2,2n+1 from Figure 3.9 to Σ(T2,2n+1) as above. Identify the Heegaard
states in the genus 2 diagram of the double branched cover.

3.4.1. Heegaard diagram for Σ(K) from a diagram of K . A slightly
different diagram can be presented as follows, see [39] for details. It has the
advantage that the generators can be easily visualized, as being exactly the
Kauffman state of the marked diagram of K we start our procedure with.

Consider a marked diagram (P, p) for the knot K ⊂ S3 . Let us also fix a
spanning tree T for the black graph, and consider its dual spanning tree T ∗

for the white graph. (Recall that the two spanning trees have the property
that their edges are all disjoint; indeed, there is an edge of T or T ∗ through
every crossing of P .) An edge of T ∪T ∗ instructs us how to take a resolution
at the vertex at hand: pick the one which joins the two domains connected
by the edge of T or T ∗ . It is not hard to see that in this way we will get
a single unknot, with all black and all white domains merged by the chosen
resolutions.

The Heegaard diagram of Σ(K) will closely follow the construction described
in Subsection 3.2.1. Indeed, consider the diagram in the plane, and viewing
it as the image of an immersion to R2 ⊂ R3 , take its tubular neighborhood,
a solid genus g handlebody with g being one more than the crossing number
of the knot diagram. The boundary of this handlebody will be our Heegaard
surface Σ, and the α-curves are chosen exactly as in Subsection 3.2.1: as
the intersections of Σ and the plane containing the diagram, with one com-
ponent deleted.

The definition of the β -curves is, however, slightly different, and rests on the
choice of the spanning tree T . Firs of all take the meridian βg at the marking
p on the knot diagram; recall that the marking is on an edge neighbouring
the unbounded domain. The further β -curves in Subsection 3.2.1 were
taken at the crossings by a simple rule (cf. Figure 3.4). Now we will modify
the construction of these curves. The plane containing the diagram cuts Σ
into two components, an upper (Σ+ ) and a lower (Σ− ) one. In the upper
component Σ+ we choose the same curves as in Subsection 3.2.1, which then
results two arcs at each crossing. We position them so that each arc has one
of its endpoint in an intersection point of Σ with T ∪T ∗ (where these trees
are also viewed as part of the plane containing the diagram of the knot).
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In the lower portion Σ− we look for two further arcs at every crossing to
complete the upper two arcs to provide the β -circles. One of these arcs
is easy to define: just project the portion of the edge of T ∪ T ∗ passing
through the crossing to Σ− . Deleting these arcs from Σ− we get an annulus
(corresponding to the fact that the resolution dictated by T ∪ T ∗ has a
single component), and when cutting it further along the lower half of βg
(the meridian chosen at the marking), we get a disk as complement. Now
there is (up to isotopy) a unique way to complete the arcs to closed curves in
a manner that they stay disjoint, providing the β -curves. For the resulting
diagram we have the following (see [39] for the proof):

Proposition 3.4.2 ([39]). When starting with a marked diagram (P, p)
of the knot K , the above procedure provides a Heegaard diagram (Σ,α,β)
corresponds to Σ(K). �

Exercise 3.4.3. Applying the algorithm above, find Heegaard diagrams of
the three-manifolds defined as branched double-covers of S3 , branched along
(a) the right-handed trefoil knot T2,3 ,

(b) the Figure-8 knot and

(c) the knot 85 of the knot tables (the first alternating knot in Rolfsen’s knot
table [118] which is not two-bridge),

(d) along 810 .

Notice that since the diagram of L ⊂ S3 given in Subsection 3.2.1 and
the one derived above for Σ(K) are identical in the upper half Σ+ , the
intersections between the α- and the β -curves are the same in the two
diagrams. In particular, the Heegaard states in this Heegaard diagram of
Σ(K) can be naturally identified with the Kauffman states of the marked
diagram (P, p) of then knot K ⊂ S3 .





Chapter 4

Symplectic geometry

Heegaard Floer homology is built upon constructions from symplectic ge-
ometry. In this chapter, we review some of the basic definitions from this
subject, and refer the reader to [75, 12] for more thorough treatments.
In Section 4.1 we recall the basic definitions and constructions of symplec-
tic manifolds, while in Section 4.2 we discuss two types of submanifolds:
symplectic and Lagrangian. Almost-complex structures are introduced in
Section 4.3, and in Section 4.4 this notion is investigated for four-manifolds.
In Section 4.5 we define a characteristic cohomology class associated to La-
grangian submanifolds, which will play an important role in the sequel.

4.1. Symplectic manifolds

We start by recalling the definition of a symplectic manifold:

Definition 4.1.1. Let M be a 2n-dimensional smooth manifold. A sym-
plectic form on M is a smooth 2-form ω ∈ Ω2(M ;R) that is closed (dω =
0) and that satisfies the non-degeneracy hypothesis that the n-fold wedge

product

n︷ ︸︸ ︷
ω ∧ ... ∧ ω ∈ Ω2n(M) vanishes nowhere. A symplectic manifold

is a pair (M,ω), where ω is a symplectic form on M .

Exercise 4.1.2. Let V be a 2n-dimensional real vector space equipped with
an alternating 2-form ω0 ∈ Λ2(V ∗) (i.e. a skew-symmetric bilinear form
ω0 : V ⊗ V → R). Show that the following two conditions are equivalent:

(1) The n-fold wedge product of ω0 with itself is non-zero, as an ele-
ment of Λ2n(V ∗) ∼= R.

75
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(2) For each non-zero vector v ∈ V , there is a vector w ∈ V so that
ω0(v, w) 6= 0.

In particular, for a symplectic manifold the top exterior power of ω can
be viewed as a volume form for M , and hence inducing an orientation on
M . We will always think of our symplectic manifolds as oriented with this
preferred orientation.

Definition 4.1.3. A symplectic manifold (M,ω) is called exact if ω is
exact, that is, can be written as ω = dα for some 1-form α .

The standard symplectic form ωst on R2n (with coordinates x1, y1, . . . , xn, yn )
is given by

ωst =

n∑
i=1

dxi ∧ dyi.

This form is clearly non-degenerate. It is also closed; in fact, it is exact, as

ω = d

(∑
i

xidyi

)
.

Exercise 4.1.4. (a) In what dimensions m can the sphere Sm be given the
structure of a symplectic manifold?

(b) Show that a closed symplectic manifold cannot be exact.

A diffeomorphism φ : (M,ω)→ (M ′, ω′) between two symplectic manifolds
is a symplectomorphism if φ∗(ω′) = ω . If there is such a symplectomor-
phism, then we say that (M,ω) and (M ′, ω′) are symplectomorphic.

Symplectic manifolds arise in many contexts. Perhaps the first basic exam-
ple is the cotangent bundle of any smooth manifold, which we describe in
Example 4.1.5. We will use the following notation: if f : X → Y is a smooth
map between manifolds, let Txf : TxX → Tf(x)Y denote the induced map
of tangent spaces.

Example 4.1.5. Let L be a real n-dimensional manifold. Its cotangent
bundle T ∗L is equipped with a tautological one-form λ, called the Liouville
form , defined as follows. Consider the projection map π : T ∗L → L, and
take its differential Tηπ : Tη(T

∗L) → Tπ(η)L at any η ∈ T ∗L. The map
Tη(T

∗L) → R, sending v ∈ Tη(T ∗L) to the evaluation η(Tπη(v)), gives a
one-form λ ∈ Ω1(T ∗M) on M = T ∗L. The above one-form is natural in
the sense that if f : L → L′ is a diffeomorphism and f∗ : T ∗L′ → T ∗L is
its induced map on the contangent bundle, then (f∗)∗(λ) = λ′ . The exact
2-form −dλ on T ∗L is clearly closed, and it is non-degenerate, as the local
calculation given below shows. In conclusion, (T ∗L,−dλ) is a symplectic
manifold.
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The Liouville form has the following explicit description in local coordinates.
Suppose L ∼= Rn , with local coordinates x1, . . . , xn . This induces a coor-
dinate system on T ∗Rn by the parameterization Rn × Rn → T ∗Rn given
by

(x1, . . . , xn, y1, . . . , yn)→ (x1, . . . , xn,
n∑
i=1

yidxi).

With respect to this trivialization, λ =
∑
yidxi.

A further class of examples for symplectic manifolds is furnished by two-
manifolds: any volume form ω on a two-manifold is a symplectic form.
These examples are not exact (Definition 4.1.3) if Σ is closed.

Another construction is given as follows:

Example 4.1.6. If (M1, ω1) and (M2, ω2) are symplectic manifolds, form
their product M1 ×M2 , which has projection maps πi : M1 ×M2 →Mi for
i = 1, 2. For any two positive real numbers α, β , the 2-form απ∗1(ω1) +
βπ∗2(ω2) is a symplectic form on M1 ×M2 .

Many more non-exact examples are furnished by algebraic varieties. To give
the construction, we will use some standard notation from several complex
variables. (See, for example, [42, Chapter 0].) Consider Cn with its coor-
dinates (z1, . . . , zn), where zi = xj + iyj . The complex valued one-forms
naturally split into a direct sum of complex-linear one-forms and complex
anti-linear one-forms; Ω1 ∼= Ω1,0 ⊕ Ω0,1 , where dzj ∈ Ω1,0 is written as
dzj = dxj + idyj and dzj ∈ Ω1,0 is written as dzj = dxj − iyj . With

respect to this splitting, we can write d = ∂ + ∂ , where

∂f =
∑
j

1

2

(
∂f

∂xi
− i∂f

∂y j

)
dzj , and ∂f =

∑
j

1

2

(
∂f

∂xi
+ i

∂f

∂y j

)
dzj

More generally, there is a splitting Ωm ∼=
⊕

j+k=m Ωj,k , and the exterior

derivative has components ∂ : Ωj,k → Ωj+1,k and ∂ : Ωj,k → Ωj,k+1 .

Example 4.1.7. The Fubini Study form ωFS on CPn is constructed
as follows. Consider first Cn+1 with coordinates (z0, . . . , zn), and let |z| =√∑n

i=0 |zi|2 . Define the 2-form on Cn+1 \ 0 by

ω0 =
i

2π

∑n
j=0 dzj ∧ dzj
|z|2

−

(∑n
j=0 zjdzj

)
∧
(∑n

j=0 zjdzj

)
|z|4

 .

This 2-form is invariant under rescaling and hence descends to a 2-form
ωFS over CPn . Since ω0 = i

2π∂∂ log |z|2 , it follows that ωFS is invariant
under the action of U(n + 1). It is now a straightforward computation to
verify that ωFS is closed and non-degenerate. (See [42, Chapter 0.7])
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More generally, for any complex submanifold X ⊂ CPn , ωFS |X is a sym-
plectic form; see Proposition 4.3.20 below.

4.2. Lagrangian and symplectic submanifolds

There are two particularly nice classes of submanifolds of symplectic mani-
folds:

Definition 4.2.1. Let (M2n, ω) be a symplectic manifold and Wm ⊂M2n

be a submanifold. We say that Wm ⊂M2n is a symplectic submanifold
if the restriction of ω to Wm is a symplectic form on Wm . We say that
Wm ⊂M2n is isotropic if the restriction of ω to Wm vanishes identically.
When m = n, an isotropic submanifold is called Lagrangian .

Exercise 4.2.2. Show that if Wm ⊂M2n is isotropic, then m ≤ n.

The canonical example of a Lagrangian submanifold is the zero-section L
of the cotangent bundle T ∗L for any smooth manifold L , equipped with
the symplectic structure of Example 4.1.5. In fact, Weinstein’s Lagrangian
tubular neighborhood theorem states that any Lagrangian submanifold L in
a symplectic manifold admits a neighborhood that is symplectomorphic to a
neighborhood of the zero section in T ∗L ; see for example [75, Theorem 3.31].
Analogous theorems exist for symplectic submanifolds [75, Theorem 3.30].

Remark 4.2.3. It follows from the above neighbourhood theorem of Wein-
stein that the normal bundle NL of a Lagrangian submanifold L is isomor-
phic to T ∗L. Indeed, this topological result can be seen directly: the map
f : NL→ T ∗L defined on a normal vector v ∈ NL by v 7→ ω(v, ·) is a bun-
dle map between equal dimensional vector bundles, and it is injective (hence
an isomorphism) because L is Lagrangian.

Exercise 4.2.4. For (Σ1, ω1) and (Σ2, ω2) two oriented surfaces equip the
product Σ1 × Σ2 with the symplectic form π∗1ω1 + π∗2ω2 . Find a basis of
H2(Σ1 × Σ2;Z) represented by embedded surfaces, each of which is either
symplectic or Lagrangian.

Further Lagrangian submanifolds can be constructed as follows:

Exercise 4.2.5. Fix a smooth 1-form η ∈ Ω1(L). The graph Γη of η is
the submanifold of T ∗L given as the subset {(p, ηp)

∣∣p ∈ L}. Show that the
restriction of the Liouville form λ to Γη is identified with η via the projec-
tion Γη → L; i.e. if π is the bundle map T ∗L → L, then π∗(η) = λ|Γη .
In particular, the graph of a closed one-form is a Lagrangian submanifold of
(T ∗L,−dλ).
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Example 4.2.6. Let (M2n, ω) be a symplectic manifold, and let πi : M ×
M → M for i = 1, 2 denote the projection to the ith factor. Then the
2-form Ω = π∗1(ω) − π∗2(ω) is a symplectic form (inducing an orientation
on M ×M that is (−1)n times the product orientation), and the diagonal
∆ = {(p, p) | p ∈M} ⊂M×M is a Lagrangian submanifold of (M×M,Ω).
More generally, if φ : (M,ω)→ (M,ω) is a symplectomorphism, then

Γφ = {(p, φ(p)) | p ∈M} ⊂M ×M

is a Lagrangian submanifold of (M ×M,Ω).

Example 4.2.7. The inclusion of Rn+1 → Cn+1 induces an embedding of
RPn ⊂ CPn . With respect to the Fubini-Study form on CPn , the subman-
ifold RPn is Lagrangian.

4.3. Symplectic manifolds and almost-complex
structures

It is often convenient to endow symplectic manfiolds with an auxiliary struc-
ture, called an almost-complex structure, defined below. As motivation, we
start with a more restrictive notion, that of a complex structure.

Definition 4.3.1. A complex n-manifold M is a smooth manifold,
equipped with distinguished local charts modeled on Cn , whose transition
functions are holomorphic. We say that this collection of local charts gives
the underlying smooth manifold a complex structure.

For a manifold with a complex structure, the tangent bundle TM is nat-
urally a bundle of complex vector spaces; i.e. for each m ∈ TM , multi-
plication by i , defined on TmM ∼= TzCn , is independent of the choice of
coordinate chart around m ∈M . Intrinsically, this multiplication by i can
be thought of as a certain kind of endomorphism of the tangent bundle,
formalized in the following definition:

Definition 4.3.2. Given a complex n-manifold M , a submanifold Nk ⊂M
is called a complex submanifold if it can be covered by open charts U
modeled on Cn in M as in Definition 4.3.1, with the property that N ∩ U
is modelled on Ck ⊗ 0 ⊂ Cn .

The above definition has the following natural generalization to the almost-
complex case:

Definition 4.3.3. Let (X, J) be an almost-complex manifold. A subman-
ifold Y ⊂ X is called a J -holomorphic if TY is preserved by J ; i.e.
JTyY = TyY for each y ∈ Y .
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We explore now the connection between complex notions and symplectic
ones.

Definition 4.3.4. An almost-complex structure J on a smooth mani-
fold X is a bundle automorphism J : TX → TX satisfying J ◦J = − IdTX .

As noted above, a complex structure on X induces an almost-complex struc-
ture on X . But not every almost-complex structure arises in this manner:
those which are are called integrable.

Remark 4.3.5. To an almost-complex manifold, there is a naturally as-
sociated tensor, called the Nijenhuis tensor. A theorem of Newlander and
Nirenbeg [92] states that an almost-complex structure is integrable exactly
when its Nijenhuis tensor vanishes. In particular, if the manifold is (real)
2-dimensional, every almost-complex structure is integrable.

Definition 4.3.6. Let (M,ω) be a symplectic manifold. An almost-complex
structure J on M is said to be compatible with ω if at each p ∈M and for
v, w ∈ TpM we have ω(v, w) = ω(Jv, Jw), and for each non-zero v ∈ TpM
the value ω(v, Jv) is positive.

The space of almost-complex structures on a manifold M is denoted J (M);
it inherits its topology from the endomorphism space of the tangent bundle,
which we endow with the C∞ topology. The proof of the next result will
be given after we analyze similar notions on linear spaces.

Theorem 4.3.7. A symplectic manifold (M2n, ω) admits a compatible almost-
complex structure J . Moreover, for the given (M,ω) the ω -compatible
almost-complex structures form a contractible space, hence J is unique up
to homotopy.

In view of Theorem 4.3.7, the tangent bundle of a symplectic manifold can
be viewed as a complex vector bundle. The Chern classes of a symplectic
manifold ci(M,ω) are defined as ci(TM, J) ∈ H2i(M ;Z), for a compati-
ble almost-complex structure J . Since any two choices are homotopic, the
Chern classes are independent of the choice of the compatible J .

• The total Chern class c(CPn) =
∑n

i=0 ci(CPn) of the complex
projective space CPn is equal to (1+h)n+1 , where h ∈ H2(CPn;Z)
is the generator which evaluates as 1 on the homology class of
CP 1 ⊂ CPn ; see [81]. In particular, c1(CPn) = (n+ 1)h .

• Fix an integer d ≥ 1 and consider the degree d hypersurface

Sd = {[z1 : z2 : z3 : z4] ∈ CP 3 |
∑
i

zdi = 0} ⊂ CP 3.
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The Chern classes of Sd are given by the following formula: if
i : Sd → CP 3 denotes the embedding and x = i∗(h) for the above
generator h ∈ H2(CP 3;Z), then c1(Sd) = (4 − d)x and c2(Sd) =
(d2 − 4d + 6)x2 ; see [34]. In particular, the K3-surface S4 has
vanishing first Chern class.

• The (complex) n-dimensional torus Tn = Cn/Z2n has trivial tan-
gent bundle, hence for i > 0, ci(Tn) = 0.

• For a closed Riemann surface Σ of genus g , equipped with a sym-
plectic form ν , the Chern class c1(Σ, ν) equals the Euler class of
the tangent bundle, and its integral over the fundamental cycle [Σ]
of Σ is given by

〈c1(Σ, ν), [Σ]〉 = 2− 2g.

The compatibility condition from Definition 4.3.6 fits into the following
framework. Consider the following three structures on a manifold M2n : a
Riemannian metric g , an almost-complex structure J , and a non-degenerate
2-form ω . There are compatibility conditions one can define for any two of
those three pieces. We start our discussion with the linear case, that is, we
study these structures first on vector spaces.

Definition 4.3.8. Suppose that V is an even-dimensional vector space. A
complex structure on V is a linear endomorphism J so that J ◦J = − Id.

Remark 4.3.9. Note that this notion is different from the notion of “com-
plex structure” on manifolds used earlier. To distinguish the above linear
notion from the version for complex manifolds, sometimes one refers to the
objects in Definition 4.3.8 as “linear complex structures”. For example, an
almost-complex structure on a manifold M is a (continuous) choice of linear
complex structure on its tangent spaces.

Definition 4.3.10. • A non-degenerate anti-symmetric bilinear form
ω and a complex structure J on V are compatible if ω(Ju, Jv) =
ω(u, v) for all u, v ∈ V and the symmetric form g(u, v) = ω(u, Jv)
is positive definite; i.e. if ω(v, Jv) > 0 for all 0 6= v ∈ V .

• A symmetric, positive definite form g and a complex structure J
on V are said to be compatible if g(u, v) = g(Ju, Jv). In this
case, we can define an associated non-degenerate 2-form ω by

(4.1) ω(u, v) = g(Ju, v).

• A non-degenerate 2-form ω and a symmetric, positive definite form
g are compatible if the endomorphism J characterized by Equa-
tion (4.1) is a complex structure.

A compatible triple is a triple (ω, J, g) where any two are compatible.
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Let R2n be the vector space, equipped with the basis {ei, fi}ni=1 . The stan-
dard symplectic form Ω0 is the anti-symmetric bilinear form determined by

(4.2) Ω0(ei, ej) = Ω0(fi, fj) = 0 and Ω0(ei, fj) = δi,j .

The standard complex structure on R2n in the above basis is determined by

J0(ei) = fi J0(fi) = −ei.

Let J0 be the matrix representing J0 with respect to this basis. Let G0

denote the metric on R2n for which {ei, fi}ni=1 is an orthonormal basis. It
is easy to see that (J0,Ω0,G0) is a compatible triple; we call it the standard
compatible triple.

If V 2n is any vector space equipped with a non-degenerate anti-symmetric
bilinear form ω , then there is a choice of basis {ei, fi}ni=1 with respect
to which ω satisfies the identities from Equation (4.2); i.e. there is an
isomorphism of symplectic vector spaces

(4.3) (V 2n, ω) ∼= (R2n,Ω0).

By pulling back G0 and J0 along this identification, the symplectic structure
ω can be extended to a compatible triple. In particular, any symplectic
structure on a vector space admits a compatible almost-complex structure.
(For further discussion about these structures, see [12].)

In fact,

Proposition 4.3.11. A compatible triple (ω, J, g) on a 2n-dimensional vec-
tor space V is uniquely determined by any two of its components. �

Proof. This is a straightforward consequence of Equation (4.1): two of ω
(assumed to be non-degenerate), g (assumed to be non-degenerate), and J
determines the third.

Remark 4.3.12. The fact that any two components of a compatible triple
uniquely determines the third can be formulated as the following identity
for Lie groups. Let (G0,Ω0, J0) be the standard compatible triple on R2n ,
equipped with the basis {ei, fi}ni=1 , and (as above) let J0 be the matrix repre-
senting J0 in this basis. The symmetry groups of G0 , Ω0 , and J0 , which are
O(2n), Sp(2n) and GLn(C) respectively, can be specified as the subgroups
GL2n(R):

O(2n) = {A ∈ GL2n(R) | AAT = Id},

Sp(2n) = {A ∈ GL2n(R) | AT J0A = J0},

GLn(C) = {A ∈ GL2n(R) | AJ0 = J0A}.



4.3. Symplectic manifolds and almost-complex structures 83

The claimed identity, then, is that the intersection of any two of the above
three subgroups equals their triple intersection (which in turn is the unitary
group U(n)); i.e.

O(2n) ∩ Sp(2n) = Sp(2n) ∩GLn(C) = GLn(C) ∩O(2n) = U(n),

cf. [75, Lemma 2.17].

Exercise 4.3.13. Show that a 2-form ω and a symmetric positive definite
form g on a vector space V are compatible if and only if the map J deter-
mined by g(Jv,w) = ω(v, w) preserves g , that is, g(Jv, Jw) = g(v, w) for
all v, w ∈ V .

The following linear algebraic result is the crucial step in verifying Theo-
rem 4.3.7.

Proposition 4.3.14. ([75, Proposition 2.48]) The space of complex struc-
tures on a vector space V compatible with a given non-degenerate anti-
symmetric form ω is contractible.

Proof. We can assume that (V, ω) is the standard symplectic vector space
(R2n,Ω0).

Consider the following map from the space M(V ) of symmetric positive
definite forms on V to the space JΩ0 of Ω0 -compatible complex structures
on V : for g ∈M(V ) define A ∈ GL2n(R) as

Ω0(v, w) = g(Av,w)

for all w ∈ V . Since Ω0(v, w) = −Ω0(w, v), it follows that for the g -adjoint
A∗ of A , we have that A∗ = −A . Thus, P = A∗A = −A2 is g -positive def-
inite. This implies that P can be diagonalized with all positive eigenvalues
λi . By taking the appropriate conjugate of the diagonal matrix with

√
λi in

the diagonal, we get the unique g -self-adjoint, g -positive definite symmetric
matrix Q satisfying P = Q2 . We claim that A and Q commute. Indeed,
if Vi is the eigenspace of P corresponding to the eigenvalue λi (or alterna-
tively, Vi is the eigenspace of Q with eigenvalue

√
λi ), then for v ∈ Vi we

have Av ∈ Vi since

PAv = −A3v = APv = A(λiv) = λiAv.

On Vi , however, Q and A commute, hence they commute on V .

Now we define the map r : M(V ) → JΩ0 by r(g) = Q−1A . This map
is obviously continuous, and since r(g)2 = Q−2A2 = − Id, it maps into
the space of complex structures. Furthermore, since r(g)∗ = A∗(Q∗)−1 =
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−AQ−1 = −r(g), we get that r(g)∗r(g) = Id. This identity then shows that
the complex structure r(g) is compatible with Ω0 , since

Ω0(r(g)v, r(g)w) = g(Ar(g)v, r(g)w) = g(r(g)Av, r(g)w) =

= g(Av, r(g)∗r(g)w) = g(Av,w) = Ω0(v, w),

and

Ω0(v, r(g)v) = g(Av, r(g)v) = g(−r(g)Av, v) = g(−Q−1A2v, v) = g(Qv, v) > 0.

If Ω0, g and J form a compatible triple, then A = J and Q = Id, hence
r(g) = J . Let t ∈ [0, 1] and define the map ft : JΩ0 → JΩ0 by

ft(J) = r((1− t)gJ0 + tgJ)

where gJ is defined by the property that Ω0, J and gJ form a compatible
triple. Now f1 = Id and f0 ≡ J0 shows that we have a contraction of the
space of Ω0 -compatible complex structures on V .

It is sometimes convenient to weaken the compatibility condition between
complex structures and anti-symmetric forms, as follows:

Definition 4.3.15. Suppose that V is a vector space and ω is a non-
degenerate anti-symmetric 2-form on V . The complex structure J on V
is ω -tame if ω(v, Jv) > 0 when v ∈ V is non-zero.

A complex structure J compatible with ω is also ω -tame. Unlike ω -
compatibility, the ω -tameness condition on J is an open condition. Given ω
and J so that J is ω -tame, we can construct an associated positive definite
quadratic form

(4.4) g(u, v) =
1

2
(ω(u, Jv) + ω(v, Ju)).

Proposition 4.3.16. The space J tω of ω -tame complex structures on V is
contractible.

Proof. As before, we will work in the standard symplectic vector space
(R2n,Ω0), equipped with its basis {ei, fi}ni=1 . The matrix of representing
any endomorphism J of R2n with respect to this basis can be written as
−J0Z for some matrix Z . We say that Z > 0 if G0(v, Zv) > 0 for each
v 6= 0; obviously, if Z > 0, then Z is invertible.

The endomorphism J is a complex structure if and only if J2 = J0ZJ0Z =
−Id, which is equivalent to Z−1 = J−1

0 ZJ0 ; and J is Ω0 -tame if, in addi-
tion, Z > 0. (Furthermore, it is Ω0 -compatible if we also have that Z is
symmetric).
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Let I denote the identity matrix. Note that if Z > 0, then Id +Z > 0, so we
can form F (Z) = (I−Z)(I+Z)−1 . Letting ‖M‖ = max{‖M(v)‖ | ‖v‖ = 1} ,
we have that

‖F (Z)‖ =
‖I− Z‖
‖I + Z‖

≤ 1− ‖Z‖
1− ‖Z‖

= 1.

The equation Z−1 = J−1
0 ZJ0 transforms to −F (Z) = J−1

0 F (Z)J0 :

J−1
0 F (Z)J0 = J−1

0 (I−Z)J0J−1
0 (I+Z)−1J0 = J−1

0 (I−Z)J0(J−1
0 (I+Z)J0)−1 =

(I− Z−1)(I + Z−1)−1 = −F (Z).

Hence, F provides a homeomorphism between the space of Ω0 -tame com-
plex structures and the space of matrices {W | ‖W‖ ≤ 1, J−1

0 WJ0 = −W} .
Since this latter set is a convex set, the contractibility claim follows at once.

Exercise 4.3.17. Show that if Z is symmetric, then F (Z) is also sym-
metric. Combine this with the proof of Proposition 4.3.16, and give an
alternative proof of Proposition 4.3.14.

For a smooth manifold the notions of Definition 4.3.10 generalize to almost-
complex structures, non-degenerate 2-forms and Riemannian metrics by re-
quiring the same compatibility conditions fiberwise. In particular, we can
define compatible triples for manifolds. Proposition 4.3.11 has the following
consequence for manifolds:

Proposition 4.3.18. A compatible triple on a smooth manifold M is uniquely
determined by two pieces of data; that is, any two compatible of ω , J , or g
can be completed to form a compatible triple. �

We now prove Theorem 4.3.7:

Proof. [Proof of Theorem 4.3.7] An almost-complex structure is a section
of the bundle End(TM); to be compatible with ω , the section is required
to have the property that for every p ∈M , σ(p) lies in a contractible subset
End(TpM) for every p . So compatible almost-complex structures for (M,ω)
are sections of a bundle with contractible fibers, implying the claim of the
theorem.

For a non-degenerate 2-form ω on M , we say that an almost-complex struc-
ture J is ω -tame if its restriction to each fiber is tame; i.e. ωp(v, Jpv) > 0
for each p ∈M and each non-zero v ∈ TpM . Proposition 4.3.16, combined
with the argument from the proof of Theorem 4.3.7, gives:
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Theorem 4.3.19. A symplectic manifold (M,ω) always admits ω -tame
almost-complex structures and the space of ω -tame almost-complex struc-
tures is contractible. �

Given (M,ω) and an ω -tame J , there is an associated Riemannian metric
on M defined as in Equation (4.4) by

(4.5) gp(v, w) =
1

2
(ωp(v, Jpw) + ω(w, Jpv)),

for each p ∈M and each v, w ∈ TpM .

A metric g on a complex manifold (M,J) is a Kähler metric if it is compat-
ible with J , and the 2-form ω(u, v) = g(Ju, v) is a symplectic form. (The
2-form ω defined above is always non-degenerate, so the Kähler condition
is really dω = 0.) In this case the symplectic form ω is called a Kähler
form. Not every complex manifold is Kähler. For example, the quotient of
Cn \ {0} by the Z-action induced by the map

(z1, . . . , zn) 7→ (2z1, . . . , 2zn)

is a complex manifold, which is diffeomorphic to S1 × S2n−1 . For n ≥ 2
this manifold has vanishing second cohomology, hence it admits no non-
degenerate closed 2-form. The Kähler condition has strong topological im-
plications: for example, the odd Betti numbers b2i+1 of a Kähler manifold
are all even [42].

The Fubini-Study 2-form defined in Example 4.1.7 is a Kähler form equip-
ping CPn with a Kähler metric.

Proposition 4.3.20. Any complex submanifold of a Kähler manifold is also
Kähler.

Proof. Let Y be a complex submanifold of a Kähler manifold (X, J, g, ω).
Since Y is a complex submanifold, J preserves TY . It follows that the
restriction of ω to Y is non-degenerate. The restriction of ω to Y is closed,
since ω is closed on X .

It follows that any complex submanifold of CPn is Kähler. These subman-
ifolds are called smooth projective varieties. Note that not every Kähler
manifold is projective. (See for example [87, Chapter 2]; see also [141].)

There are also manifolds which are symplectic but not Kähler. In fact, the
following Kodaira-Thurston manifold K [133] admits both a complex and a
symplectic structure, but the two structures are not compatible. The four-
manifold K is defined as the quotient of T 3

x,y,z × Rt by a free Z-action,
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where n ∈ Z acts on (x, y, z, t) as

(x, y, z, t) 7→ (x, y + nx, z, t+ n).

The symplectic form dx ∧ dy + dz ∧ dt descends to a symplectic form ωK
to K . The manifold has b1(K) = 3, therefore it is not Kähler.

Exercise 4.3.21. Let K be the Kodaira-Thurston manifold. (a) Compute
the fundamental group of K , and show that b1(K) = 3.

(b) Show that for an almost-complex structure J1 on K compatible with the
symplectic structure ωK we have c1(K,J1) = 0 (i.e. c1(K,ωK) = 0).

(c) Exhibit a complex structure J2 on K with c1(K,J2) = 0. (Note that J2

cannot be compatible with ωK since b1(K) is odd.)

In fact, there are many symplectic manifolds that are not Kähler. For ex-
ample, for any finitely presented group G and integer n ≥ 2, there is a
symplectic 2n-manifold X2n with π1(X2n) ∼= G [33], whereas for Kähler
manifolds, b1(X2n), which coincides with the rank of the abelianization of
G , must be even.

A Riemann surface (that is, a two-dimensional smooth manifold equipped
with a complex structure) is always Kähler, since for any compatible metric
g the compatible non-degenerate 2-form ω is necessarily closed (as is any
2-form on a two-manifold). Moreover, according to a classical result of
Riemann, a Riemann surface is always projective [91].

A symplectic manifold with a fixed (compatible) almost-complex structure is
called an almost-Kähler manifold. In an almost-Kähler manifold (M,ω, J)
a submanifold Σ ⊂ M is a J -holomorphic submanifold if TΣ is invariant
under J , that is, J(TΣ) = TΣ.

Proposition 4.3.20 has the following immediate generalization:

Proposition 4.3.22. In an almost-Kähler manifold, (M,ω, J) all J -holomorphic
submanifolds are almost-Käler.

�

Remark 4.3.23. It is not true that all symplectic submanifolds of an almost-
Kähler manifold (M,ω, J) are J -holomorphic. However, given a symplectic
submanifold N of (M,ω), one can find a compatible almost-complex struc-
ture J on M for which N is J -holomorphic.

For a J -holomorphic submanifold Σ ⊂ (M,J) the tangent bundle TM
restricted to Σ splits as a complex bundle

TM |Σ = TΣ⊕NΣ,
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where NΣ denotes the normal bundle of Σ. From the product formula for
Chern classes (see for example [81, Chapter 14]), it follows that

(4.6) c1(TM |Σ) = c1(TΣ) + c1(NΣ) ∈ H2(Σ;Z).

For example, if Σ is a J -holomorphic curve in an almost-complex four-
manifold (M4, J), and [Σ] denotes the positve generator of H2(Σ;Z), then
the evaluation of c1(TΣ) on Σ can be computed from the genus of Σ, while
the evaluation of c1(NΣ) is equal to the self-intersection of the homology
class represented by Σ, [Σ] · [Σ], giving the adjunction formula

(4.7) 〈c1(TM), [Σ]〉 = 2− 2g(Σ) + [Σ] · [Σ].

In particular, if C ⊂ CP 2 is a smooth complex curve of degree d > 0, then
since c1(CP 2) = 3h Equation (4.7) (see [42, Chapter 2]) expresses the genus
of C as

g(C) =
(d− 1)(d− 2)

2
.

If (M2n, J) is a manifold equipped with an almost-complex structure, one
can study J -holomorphic curves; these are maps u : (Σ, j) → (M,J) on a
Riemann surface (Σ, j) with the property that the derivative of u is complex
linear, that is, J ◦du = du◦j . Gromov revolutionalized symplectic geometry
by studying the moduli spaces of J -holomorphic curves in a symplectic
manifold (M,ω), where J is chosen to be ω -compatible [43]. We return to
these ideas in Chapter 6.

Let (M,J) be an almost-complex manifold. A submanifold L ⊂ M is
called totally real if for every p ∈ L we have Jp(TpL) ∩ TpL = 0. If (M,ω)
is symplectic and L ⊂ M is Lagrangian, then for any compatible almost-
complex structure J the Lagrangian L is totally real.

Let (M2n, J) be an almost-complex manifold, and suppose that c : M →M
is an anti-holomorphic involution; i.e. c∗(J) = −J . Suppose furthermore
that the fixed point set L of c is a smooth n-dimensional manifold. In this
case L is totally real. For example, if L ⊂ RP k is a smooth, real algebraic
variety whose complexification M2n ⊂ CP k is also smooth, then L is totally
real in M2n . In fact, it is Lagrangian for the restriction of the Fubini-Study
form to M2n .

4.4. Almost-complex structures on
four-manifolds

Suppose that X is a closed, connected, oriented, smooth four-manifold. The
existence of an almost-complex structure on X can be easily determined
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from the algebraic topology of X , according to the following theorem of
Hirzebruch and Hopf.

To formulate the theorem, recall that a four-manifold X as above is equipped
with an intersection form (see for example [34]), which is a non-degenerate
bilinear form

QX : H2(X;Z)⊗H2(X;Z)→ Z.

In terms of algebraic topology, this form is given by the cup product pairing
^ : H2(X;Z) ⊗ H2(X;Z) → H4(X;Z), composed with the identification
H4(X;Z) ∼= Z induced by the orientation on X . Geometrically, the in-
tersection form computes the oriented intersection number of the surfaces
that are Poincaré dual to the in-coming two-dimensional cohomology classes.
Sometimes we abbreviate QX(ξ ⊗ ξ) by ξ2 , and QX(ξ ⊗ η) by ξ · η .

Let σ(X) denotes the signature of the intersection form of X , and χ(X)
denotes the Euler characteristic of X .

We state without proof the following celebrated Hirzebruch signature theo-
rem, in the case of 4-manifolds, refering the interested reader to [81, Theo-
rem 19.4] for a proof (of a more general version, for manifolds of dimension
4k ). For the statement, we use conventions from [81]; in particular the first
Pontrjagin class p1(TX) is given by p1(TX) = −c2(TX ⊗ C).

Theorem 4.4.1 (Hirzebruch). Let X be a closed, smooth oriented four-
manifold, then

〈p1(TX), [X]〉 = 3σ(X),

where p1(TX) ∈ H4(X) is the first Pontrjagin class of the tangent bundle
of X . �

Theorem 4.4.2 (Hirzebruch-Hopf [51]). The closed, connected, oriented,
smooth four-manifold X admits an almost-complex structure if and only if
there is a cohomology class h ∈ H2(X;Z) such that

(4.8) h ≡ w2(TX) (mod 2) and h2 = 3σ(X) + 2χ(X).

Before the proof, recall the classification of complex 2-plane bundles over a
four-manifold.

Lemma 4.4.3. A complex 2-plane bundle E → X over a closed four-
manifold X is determined by its first and second Chern classes c1(E) and
c2(E). In addition, for any pair c1 ∈ H2(X;Z) and c2 ∈ H4(X;Z) there is
a complex 2-plane bundle E over X with c1(E) = c1 and c2(E) = c2 .
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Proof. Consider the restriction of E → X to X \ {pt.} . As X \ {pt.}
is homotopic to a three-complex, the restriction admits a nowhere vanish-
ing section, hence E|X\{pt.} splits as L ⊕ C with a line bundle L satisfy-
ing c1(L) = c1(E). The extension of the bundle from X \ {pt.} to X is
determined by the clutching function S3 → U(2), i.e. by an element of
π3(U(2)) ∼= Z . Indeed, this number determines the signed number of zeros
of the extension of a nowhere vanishing section from X \ {pt.} to X . The
Poincaré dual of the zero-set is equal to the Euler class e(E) of the bun-
dle [9, Theorem 11.17], and the second Chern class c2(E) of a U(2)-bundle
is equal to its Euler class (cf. [81, Chapter 14]). Consequently U(2)-bundles
over four-manifolds with equal Chern classes are isomorphic.

As for any c1 there is a line bundle with this given first Chern class, and the
clutching function S3 → U(2) can be chosen arbitrarily, we get a complex
2-plane bundle for all (c1, c2) ∈ H2(X;Z)×H4(X;Z).

We also have the following:

Lemma 4.4.4. SO(4)-bundles over closed four-manifolds are uniquely char-
acterized by their second Stiefel-Whitney class w2 , their first Pontrjagin
class p1 and their Euler class e.

Proof. Indeed, over X \ {pt.} an R4 -bundle F splits as V ⊕ R , and V
is determined by w2(F ). The extension of the bundle to X is determined
by the clutching function S3 → SO(4), an element of π3(SO(4)) ∼= Z⊕ Z .
This pair of integers is determined by the first Pontrjagin and the Euler
numbers. (See the proof of [81, Lemma 20.10], where this statement is
proved for X = S4 . The case for general X follows from excision. See also
Exercise 4.4.5 below.)

Exercise 4.4.5. Consider the standard dimensional representation of SO(4).
Its second exterior product Λ2 , splits (as a representation space) as a direct
sum of two three-dimensional representations Λ2 = Λ+ ⊕ Λ− ; and corre-
spondingly, there is a Lie group homomorphism SO(4)→ SO(3)+×SO(3)− .

(a) Show that the above map is a double cover.

(b) Consider the identification

π3(SO(4)) ∼= π3(SO(3)+)⊕ π3(SO(3)−) = Z⊕ Z.

Given φ ∈ π3(SO(4)), denote the components of this isomorphism deg+(φ)
and deg−(φ). For a fixed SO(4)-bundle P and φ ∈ π3(SO(4)), let Pφ
obtained from P by modifying P in a neighborhood of a point, using the
clutching function by φ.
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Verify that

p1(Pφ) = p1(P )− 2(deg+(φ)) + deg−(φ))

e(Pφ) = e(P )− (deg+(φ)− deg−(φ).

(c) Use the above to conclude that not every triple H2(M ;Z/2Z)×H4(M ;Z)×
H4(M ;Z) is realized as (w2, p1, e) for an SO(4)-bundle.

Proof. [of Theorem 4.4.2] Let E be a U(2)-bundle, and let E|R denote
its underlying SO(4)-bundle. Then, we have the following relations be-
tween the Chern classes of E and the characteristic classes (i.e. the Stiefel-
Whitney, Pontrjagin, and Euler classes) of E|R :

w2(E|R) ≡ c1(E) (mod 2)

p1(E|R) = c1(E)2 − 2c2(E)

e(E|R) = c2(E).

Theorem 4.4.1 gives 〈p1(TX), [X]〉 = 3σ(X); and also 〈e(TX), [X]〉 =
χ(X). Thus, if X admits an almost-complex structure, i.e. TX ∼= E|R
for some U(2)-bundle E , then Equation 4.8 follows.

Conversely, if we choose h ∈ H2(X;Z) satisfying Equation (4.8), the U(2)-
bundle E with c1(E) = h and c2(E) = e(TX), which exists by Lemma 4.4.3,
has the property that E|R ∼= TX , according to Lemma 4.4.4. This latter
isomorphism now endows X with the desired almost-complex structure.

Exercise 4.4.6. Show that Xn = #nCP 2 admits an almost-complex struc-
ture if and only if n is odd. (By a result of Taubes [132], proved using
the Seiberg-Witten invariants, the four-manifold Xn admits a symplectic
structure if and only if n = 1.)

For four-manifolds with boundary, we can formulate a relative variant of
Theorem 4.4.2, as follows. An almost-complex structure J on the four-
manifold X with boundary ∂X = Y naturally induces an oriented two-plane
field ξ over Y , which is the intersection of TY , thought of as a subbundle of
TX|Y , with J(TY ). Indeed, any pair (Y, ξ), where Y is a closed, oriented
three-manifold and ξ is an oriented, 2-plane field in TY , can be realized in
this way:

Proposition 4.4.7. Suppose that (Y, ξ) is a closed three-manifold equipped
with an oriented two-plane field. Then, there is a compact, oriented, almost-
complex four-manifold (X, J) with ∂X = Y such that J induces ξ on Y ;
in short, ∂(X, J) = (Y, ξ).
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Proof. We check the claim for S3 first. According to the discussion
in Section 1.4, the space of oriented two-plane fields is parametrized by
π3(S2) ∼= Z . Indeed, the Hopf fibration S3 → S2 induces the two-plane
field that generates all other oriented two-plane fields on S3 , via connected
sums and orientation reversal.

Restricting the complex structure CP2 to X0 = CP2 \ D4 , we obtain an
almost-complex structure on X0 which induces the Hopf fibration on S3 =
∂X0 . Boundary connected sums of this example (and its orientation reversed
version) verifies the statement for all two-plane fields on S3 .

For (Y, ξ) consider a simply connected four-manifold X with ∂X = Y .
We argue that the spinc structure can be extended over X . To see why,
note first that there is some spinc structure over X – any oriented four-
manifold admits a spinc structure, by Theorem 32.2.7 from Appendix 32.
Consider the difference a = tξ − s0|Y ∈ H2(Y ;Z). Observe that since
H1(X;Z) ∼= H3(X,Y ;Z) = 0, the map H2(X;Z) → H2(Y ;Z) induced by
the embedding is onto. Choosing any extension ã ∈ H2(X;Z) of a to X ,
the spinc structure s = s0 + ã extends tξ .

Let L be the line bundle with c1(s). Since that c1(s) is an integral lift of
w2(TX), it follows that we have an isomorphism of bundles C ⊕ L ∼= TX .
(This is follows as in Lemma 4.4.4, noting now that since X has boundary, it
is homotopy equivalent to a 3-complex, so the four-dimensional obstructions
p1 and e vanish.) The bundle isomorphism C ⊕ L ∼= TX endows X with
an almost-complex structure J0 .

The almost-complex structure J0 on X induces a two-plane field ζ on Y
which differs from ξ by the action of Z ; i.e. ζ and ξ differ by the connected
sum of S3 equipped with an appropriate two-plane field η . Therefore the
boundary connected sum of (X, J) with the almost-complex four-manifold
inducing η on its boundary givesthe desired almost-complex four-manifold.

The identity c2
1(X,J) = 3σ(X) + 2χ(X) for closed almost-complex four-

manifolds can be used to define invariants of two-plane fields on closed three-
manifolds as follows.

Given a three-manifold Y , equipped with an oriented two-plane field ξ
Proposition 4.4.7 gives a compact, oriented almost-complex four-manifold
(X, J) with ∂X = Y and J inducing ξ on Y . Suppose that c1(ξ) ∈
H2(Y ;Z) is a torsion element; i.e. there is an integer n so that nc1(ξ) = 0
in H2(Y ;Z) or, equivalently, the image of c1(ξ) in H2(Y ;Q) vanishes. For
such an element, we can still define the square c1(ξ)2 , though that quantity
now is a priori a rational number. To define it, consider the image of c1(ξ)
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in H2(X, ∂X;Q), and let c1(ξ)2 denote the evaluation of c1(ξ) ∪ c1(ξ) ∈
H4(X, ∂X;Q) against the fundamental cycle H4(X, ∂X;Q) ∼= Q coming
from the orientation of X . This construction has the following more con-
crete formulation. If n · c1(ξ) = 0, then nc1(X,J) lifts to an element
(which we continue to denote n · c1(ξ) = 0) in H2(X, ∂X;Z) under the map
H2(X, ∂X;Z)→ H2(X;Z); let

c2
1(X, J) =

1

n2
QX(nc1(X, J), nc1(X, J)) ∈ Q

Now define the invariant d3(ξ) — sometimes called the Hopf invariant or
three-dimensional invariant of ξ – by the formula

(4.9) d3(ξ) =
1

4

(
c2

1(X,J)− 3σ(X)− 2χ(X) + 2
)
.

Proposition 4.4.8. Suppose that (Y, ξ) is a closed three-manifold with an
oriented two-plane field, and assume furthermore that c1(ξ) is torsion. Then
the value d3(ξ) is independent of the chosen almost-complex four-manifold
(X, J).

Proof. Compute d3(ξ) using (X1, J1) and (X2, J2). Fix the almost-
complex four-manifold (Z, J) with ∂(Z, J) = −(Y, ξ), that is, ∂Z = −Y
and the orientation of −ξ is the opposite of ξ (equivalently, if ξ is the
oriented orthogonal of the nowhere vanishing vector field v , then −ξ is the
oriented orthogonal of −v ). Then (Z, J) can be glued to both (X1, J1) and

(X2, J2) to get the almost-complex four-manifolds (X1 ∪ Z, J̃1) and (X2 ∪
Z, J̃2). The quantities σ and χ are additive under this gluing operation;
since c1(Ji)|Y vanishes, c2

1 is also additive under this summing operation.

By Theorem 4.4.2, for Xi∪Z we have c2
1(Xi∪Z, J̃i)−3σ(Xi∪Z)−2χ(Xi∪

Z) = 0, hence the claim follows at once.

If c1(ξ) ∈ H2(Y ;Z) is not a torsion class, Definition 4.9, Equation (4.9)
does not make sense, since c2

1(X, J) is not well defined. Nonetheless, we
can make sense of a difference between Hopf invariants, via the following
construction.

Let ξ1 and ξ2 are two two-plane fields on Y with c1(ξ1) = c1(ξ2) = b . There
is a compact four-manifold X with ∂X = Y admitting two almost-complex
structures J1 and J2 such that ∂(X, Ji) = (Y, ξi). Since J1 and J2 induce
the same spinc structure on ∂X = Y , c1(X, J1)−c1(X, J2) is represented by
a relative two-dimensional cohomology class. Since c1(X, J1) and c1(X, J2)
are characteristic cohomology classes, both 1

2(c1(X, J1) + c1(X, J2)) and
1
2(c1(X, J1) − c1(X, J2)) are represented by integral cohomology classes.
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Thus, we can define the relative Hopf invariant by the expression:
(4.10)

d3(ξ1, ξ2) =

(
1

2
(c1(X, J1)− c1(X, J2))

)
·
(

1

2
(c1(X, J1) + c1(X, J2)

)
∈ Z/d(b)Z, ,

where d(b) is the divisibility of b ; see Definition 1.4.7.

Proposition 4.4.9. Fix b ∈ H2(Y ;Z), and suppose that ξ1 and ξ2 are two
two-plane fields over Y with c1(ξi) = b. Then, the relative Hopf invariant
d3(ξ1, ξ2), as specified in Equation (4.10), gives a well-defined element of the
cyclic group Z/d(b)Z. In the case where b is torsion,

(4.11) d3(ξ1, ξ2) = d3(ξ1)− d3(ξ2).

Proof. As explained above, 1
2(c1(X, J1) − c1(X, J2)) can be represented

by an element A ∈ H2(X,Y ;Z); 1
2(c1(X, J1) + c1(X, J2)) by an element of

B ∈ H2(X;Z), so we can pair these to get an element of H4(X, ∂X;Z) ∼= Z .
However, this pairing depends on the chioce of lift A of A0 = 1

2(c1(X, J1)−
c1(X, J2)) ∈ H2(X;Z). Any other lift of A0 is of the form A′ = A+ δC for
some C ∈ H1(Y ;Z),

〈A′ ^ B −A ^ B, [X, ∂]〉 = 〈δ(C) ^ B, [X, ∂]〉
= 〈C ^ B|∂X , [Y ]〉 = 〈C ^ b, [Y ]〉.

Thus, d3(ξ1,x2), thought of as an element of the cyclic group Z/H1(Y ;Z)·b ,
is independent of this choice. By Poincaré duality, H1(Y ;Z) · b = d(b) · Z .

Equation (4.11), which is the motivation for the above definition of d3(ξ1,x2),
is straightforward to verify:

d3(ξ1)− d3(ξ2)

=
1

4
(c2

1(X, J1)− 3σ(X)− 2χ(X) + 2)− 1

4
(c2

1(X, J2)− 3σ(X)− 2χ(X) + 2)

=
1

4
(c1(X, J1)− c1(X, J2)) ∪ (c1(X, J1) + c1(X, J2)).

Exercise 4.4.10. Show that for any two-plane ξ field over Y , d(c1(ξ)) is
even.

4.5. The Maslov class

The Maslov class is a distinguished one-dimensional cohomology class in
the the space of Lagrangian subspaces, which will play a key role in our
constructions; see [3]. We describe this class in this section and give some
of its properties.
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Definition 4.5.1. Let (V 2n, ω) be a symplectic vector space. The linear
subspace Λ ⊂ V 2n is Lagrangian if dim Λ = n and ω|Λ = 0. The La-
grangian Grassmannian LGr(V, ω) is the space of Lagrangian subspaces
of (V 2n, ω).

Since two equal dimensional symplectic vector spaces (V1, ω1) and (V2, ω2)
are symplectic isomorphic, it follows that the associated Lagrangian Grass-
mannians LGr(V1, ω1) and LGr(V2, ω2) are diffeomorphic. The Lagrangian
Grassmannian LGr(R2n,Ω0) of the standard symplectic vector space (R2n,Ω0)
will be simply denoted by LGr(n).

The Lagrangian Grassmannian LGr(V, ω) is identified with the quotient
space U(n)/O(n) as follows. Fix an ω -compatible complex structure J on
V and let g be the induced positive definite symmetric form. A Hermitian
form on V is specified by 〈v, w〉 = g(v, w) + iω(v, w). Any n-dimensional
subspace Λ of V 2n can be given a g -orthonormal basis e1, . . . , en . Clearly,
Λ is Lagrangian if and only if for all i, j ∈ {1, . . . , n} , ω(ei, ej) = 0, i.e.
e1, . . . , en is a unitary orthonormal basis for V . Such bases are parametrized
by elements of U(n). Two orthonormal bases specify the same subspace
Λ if and only if they can be transformed into one another by an element
of O(n). Thus, there is a diffeomorphism LGr(V, ω) ∼= U(n)/O(n). In
particular LGr(V, ω) is a compact manifold, and since dimU(n) = n2 and
dimO(n) = 1

2n(n− 1), the dimension of LGr(V, ω) is 1
2n(n+ 1).

Remark 4.5.2. The choices made in identifying LGr(V, ω) with the ho-
mogeneous space U(n)/O(n) are: (1) an identification of (V, ω) with the
standard symplectic space (R2n, ωst); and (2) a choice of Lagrangian sub-
space Λ0 ∈ LGr(V, ω).

The first choice allows us to choose use J0 as the compatible almost-complex
structure in the identification. This specifies the identification LGr(V, ω) ∼=
U(n)/O(n) up to left translation by U(n). That indeterminacy in turn is
eliminated by requiring Λ0 to correspond to the identity coset.

Example 4.5.3. It is easy to see that LGr(1) ∼= S1 . The space LGr(2)
can be described as follows. Given two-dimensional subspace W 2 in a four-
dimensional vector space V 4 , there is 2-form ψW ∈ Λ2(V ∗), so that W 2

is

kerψ = {u ∈ V | ψ(u, v) = 0 for all v ∈ V }
The 2-form ψW determining W is unique up to multiplication by a non-zero
element of R, hence ψW is well-defined as an element of the projectivized
space P(Λ2(V ∗)). Indeed, a 2-form ψ ∈ Λ2(V ∗) defines a two-dimensional
subspace in this way if ψ 6= 0 and ψ ∧ ψ = 0. Suppose now that ω is a
non-degenerate 2-form on V 4 . The two-dimensional subspace Λ ⊂ V is
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Lagrangian if ψΛ ∧ ω = 0. Therefore LGr(V ) can be described as

{ψ ∈ P(Λ2(V ∗)) | ψ ∧ ψ = ψ ∧ ω = 0}.

Choose a basis {e1, . . . , e4} for V , so that {e∗i ∧ e∗j} is a basis for Λ2(V ∗).

For the non-degenerate form ω = e∗1∧e∗2 +e∗3∧e∗4 , we get that ψ =
∑

i<j yij ·
e∗i ∧ e∗j corresponds to a Lagrangian subspace in V if and only if

(4.12) y12y34 − y13y24 + y14y23 = 0, y12 + y34 = 0.

Eliminating y34 and introducing new coordinates z1 = y12, z2 = 1
2(y13 +

y24), z3 = 1
2(y13 − y24), z4 = 1

2(y14 + y23), z5 = 1
2(y14 − y23), we identify

LGr(2) = {[z1 : z2 : z3 : z4 : z5] ∈ RP 4 | z2
1 + z2

2 + z2
4 = z2

3 + z2
5};

i.e. LGr(2) is identified with S2 × S1/(Z/2Z), where Z/2Z acts by the
antipodal map on both factors. Since this action preserves orientation on
S1 , but reverses it on S2 , the quotient three-manifold is non-orientable.

The determinant gives a homomorphism det : U(n)→ S1 , that sends all of
O(n) to {±1} . Thus det2 gives a well-defined map det2 : U(n)/O(n)→ S1 .

When n = 1, det2 induces an isomorphism LGr(1) ∼= S1 . More generally:

Proposition 4.5.4. There is an isomorphism H1(LGr(n);Z) ∼= Z, and the
generator is the pull-back of the generator of H1(S1;Z) by det2 .

Proof. Consider the homotopy long exact sequence of the fibration
O(n)→ U(n)→ LGr(n); cf. [128, Section 17.11]. We have

π1(O(n))
f−−−−→ π1(U(n)) −−−−→ π1(LGr(n))

g−−−−→ π0(O(n)) ∼= Z/2Z.

Since π1(U(n)) ∼= Z and, for n > 2, π1(O(n)) ∼= Z/2Z , it follows that f
is the zero map when n > 2. When n = 2, a straightforward computation
shows that f factors through π1(SU(2)) ⊂ π1(U(2)), so f = 0 again.
Consider the closed path A : [0, 1] → LGr(n) given by θ 7→ A(θ), where
A(θ) is the n × n diagonal matrix with a1,1(θ) = eiπθ and aj,j(θ) = 1 for
j = 2, . . . , n . Clearly, g(A) is the generator of π0(O(n)), while A ∗ A is
the image of the generator of π1(U(n)). Thus, π1(LGr(n)) ∼= Z ; and so
H1(LGr(n);Z) ∼= H1(LGr(n);Z) ∼= Z . Clearly, det2(A) is the generator of
π1(S1), so the second statement follows.

Definition 4.5.5. The above generator µn of H1(LGr(n);Z) ∼= Z is called
the universal Maslov class.
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4.5.1. The relative Maslov class. In a related direction, given a La-
grangian submanifold L ⊂ (M,ω) in the symplectic manifold (M,ω), there
is a relative two-dimensional cohomology class µL ∈ H2(M,L;Z) called
the relative Maslov class, defined as follows. Choose an almost-complex
structure J compatible with ω on M2n , and consider the corresponding
complex line bundle detC(M) = ΛnCTCM . Over L ⊂ M this line bundle
comes with a real line subbundle, detR(L) = ΛnRTL . The manifold L is
orientable if and only if detR(L) is the trivial line bundle; but in any case,
detR(L)⊗R detR(L) is a trivial line bundle, equipped with a canonical triv-
ialization. Thus, detC(M) ⊗C detC(M) is a complex line bundle with a
specified trivialization over L . The Maslov class µL ∈ H2(M,L;Z) is the
relative first Chern class of detC(M) ⊗C detC(M), relative to the specified
trivialization detR(L)⊗R detR(L) over L . (See Section 31.1.)

In particular, if F is an oriented surface-with-boundary, and u : (F, ∂F )→
(M,L) is a smooth map, the evaluation 〈µL, [F, ∂F ]〉 is computed by taking
any generic section s of u∗(detC(M)⊗CdetC(M)), so that s(p) is a non-zero
element in u∗(detR(L)⊗R detR(L))p for all p ∈ ∂F , and counting the zeros
of s with sign.

If L is an orientable manifold, µL ∈ H2(M,L;Z) is divisible by 2: an ori-
entation on L trivializes detR(L), and hence specifies a relative first Chern
class detC(M) relative to this trivialization of detR(L), which is clearly half
the relative Maslov class.

Example 4.5.6. As an example, consider the equator L ⊂ S2 , with the
standard symplectic form on S2 . Let S2 \ L = D1 ∪ D2 . The evaluation
〈µL, [Di, L]〉 = 2 for i = 1, 2.

The above example has the following analogue when n > 1:

Proposition 4.5.7. Consider the Lagrangian submanifold

RPn = {[x0 : . . . : xn] ∈ CPn | xi ∈ R}.

When n > 1, H2(CPn,RPn;Z) ∼= Z, and µRPn is n+1 times the generator.

Proof. By the cohomology long exact sequence of the pair (CPn,RPn),
H2(CPn,RPn;Z) ∼= Z . We wish to show that H2(CPn,RPn;Z) ∼= Z , as
well. The long exact sequence shows

Z ∼= H2(CPn;Z)
f→ H2(RPn;Z) ∼= Z/2Z→ H3(CPn,RPn;Z)→ H3(CPn;Z) = 0.

To see that f is surjective, note that the map Z/2Z ∼= H2(CPn;Z/2Z) →
H2(RPn;Z/2Z) ∼= Z/2Z is an isomorphism. This can be seen by intersecting
the Poincaré dual {z1 + iz2 = 0} of the generator H2(CPn;Z/2Z) with



98 4. Symplectic geometry

RPn , to get RPn−2 ⊂ RPn , which is Poincaré dual to the generator of
H2(RPn;Z/2Z). It follows that the above map f is surjective as well; so
H3(CPn,RPn;Z) = 0. By the universal coefficient theorem for cohomology,
this implies that H2(CPn,RPn;Z) ∼= Z .

A generator of H2(CPn,RPn;Z) ∼= Z can be specified as follows. Consider
CP 1 = {[z0 : z1 : 0 : . . . : 0]} ⊂ CPn , and take the closure of one of the two
components of CP 1 \RP 1 , where RP 1 = CP 1∩RPn . In fact, the quadratic
hypersurface Q = {

∑n
i=0 z

2
i } ⊂ CPn is disjoint from RPn and intersects

CP 1 in the two points [±i : 1 : . . . : 0], one in each disk component of
CP 1 \RP 1 . Since both intersections are positive, we get that the two disks
D1 and D2 represent the same relative homology class in H2(CPn,RPn;Z).
Consider any section of detC ⊗C detC over D1 and D2 extending the triv-
ialization supplied by detR(RPn) ⊗R detR(RPn) over RP 1 ; these sections
fit together to give a section σ of detC ⊗C detC over CP 1 . Since there are
2n+2 zeros of σ , 〈µRPn , [D1, ∂D1]〉+ 〈µRPn , [D2, ∂D2]〉 = 2n+2, and from
[D1, ∂D1] = [D2, ∂D2] we conclude that 〈µRPn , [D1, ∂D1]〉 = n+ 1.

The universal Maslov class and the relative Maslov class of a Lagrangian are
related, as follows. Suppose that L ⊂ (M2n, ω) is a Lagrangian submanifold,
and suppose u : (D, ∂D)→ (M,L) is a smooth map on the disk D . The pull-
back u∗(TM) over the disk D is a trivial bundle of symplectic vector spaces.
We wish to choose a trivialization of this bundle, so that (u|∂D)∗(TL) can
be thought of as a loop γL of Lagrangians in a single symplectic vector space
(V, ω).

A natural trivialization is supplied by parallel transport; we make a brief
digression to recall this notion. Suppose that M is a smooth manifold. A
connection on the tangent bundle of M is an operator taking pairs of vector
fields X and Y to a new vector field, denoted ∇XY , which is bilinear
over the two factors, and satisfies the further property that for any smooth
function f on M

∇fXY = f∇XY and ∇X(fY ) = (Xf)Y + f∇XY.

It is straightforward to construct connections; indeed, the space of connec-
tions is an affine space. (For more, see for example [81, Appendix C].)

Fix now a connection ∇ on TM . A vector field v along a path γ : [0, 1]→M
is called parallel if it satisfies ∇γ′(t)v(t) = 0. For a parallel vector field, the
value v(0) uniquely determines v(t) for all t ∈ [0, 1]. The vector v(1) is
called the parallel transport of v(0) along γ ; and so a path from p to q in
M induces, by parallel transport, and identification TpM ∼= TqM . (Hence
the terminology: the connection and path specifices a way to connect the
various tangent spaces).
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When M is symplectic, the connection ∇ is called a symplectic connection
if ω(∇ZX,Y ) + ω(X,∇ZY ) = 0 for any choice of vector fields X , Y , and
Z . The space of symplectic connections is a non-empty affine space. For a
symplectic connection, parallel transport along a path γ from p to q gives
an isomorphism of symplectic vector spaces (TpM,ωp) ∼= (TqM,ωq).

Having completed the digression, we return to our map u : (D, ∂D) →
(M,L). Fix a symplectic connection on (M,ω). Parallel transport along
radial lines trivializes the vector bundle u∗(TM), identifying its fibers with
(Tu(0,0)M,ωu(0,0)). In this manner, we can think of (u|∂D)∗(TL) as a loop
γL of Lagrangian submanifolds in a single symplectic vector space.

Proposition 4.5.8. The evaluation of the universal Maslov class µn on this
loop γL of Lagrangians coincides with the evaluation of u∗µL on [D, ∂D].

Proof. Choose a compatible almost-complex structure. Trivialize the
pullback u∗(detC(M)⊗CdetC(M)) (for example, by radial parallel transport
from the origin). The trivialization provided by detR(L)⊗detR(L) over ∂D
can be thought of as a non-vanishing map of the circle ∂D to C . On the
one hand, the degree of this map is the evaluation of the universal Maslov
class on the loop of Lagrangians coming from the boundary; on the other
hand, the degree is also the evaluation of u∗µL on [D, ∂D] .

4.5.2. Geometric representation of the universal Maslov class. The
universal Maslov class can be computed on an element in H1(LGr(n);Z)
(which is represented by a closed loop in LGr(n)) as an intersection number
of the loop with a stratified subspace of LGr(n). In the following we describe
the details of this construction, following [3]; we will revisit this construction
when discussing the Maslov index in Chapter 6.

Let (V, ω) be a symplectic vector space and fix a Lagrangian subspace Λ0 ∈
LGr(V, ω). The Maslov cycle relative to Λ0 , denoted

Σ(Λ0) = {L ∈ LGr(V, ω) | L ∩ Λ0 6= ∅} ⊂ LGr(V, ω).

The set Σ = Σ(Λ0) can be given the structure of a stratified space

Σ = ∪nk=1Σk

whose strata are given by

Σk(Λ0) = {L ∈ LGr(V, ω) | dim(L ∩ Λ) = k}.

Basic properties of this stratification are formalized in Lemma 4.5.10 below.

We can think of Σ(Λ) in the following concrete terms. Choose a linear identi-
fication of (V, ω) with the standard symplectic vector space (R2n,Ω0) of the
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same dimension, cf. Equation (4.3). Choose this identification so that the
specified Lagrangian Λ0 ⊂ V 2n maps to Rn (spanned by ei , i = 1, . . . , n)
in (R2n,Ω0). (We think of (R2n,Ω0) as equipped with the standard almost
complex structure J0 .) These choices uniquely specify the identification
LGr(V, ω) ∼= U(n)/O(n), under which the specified Lagrangian Λ0 corre-
sponds to the identity coset. and the subset Σk(Λ0) corresponds to the set
of matrices

(4.13) Σk = {A ∈ U(n) | dim(A(Rn) ∩ Rn) = k}/O(n) ⊂ U(n)/O(n).

In Proposition 4.5.11 we will explain how Σ can be used to represent the
universal Maslov class.

Example 4.5.9. Clearly, LGr(1) = U(1)/O(1) is a circle, and Σ1 is a
point in it. We describe next Σ ⊂ LGr(2), continuing notation from Exam-
ple 4.5.3, where the basis for V 4 is e1, . . . , e4 , the symplectic form is chosen
to be ω = e∗1 ∧ e∗2 + e∗3 ∧ e∗4 , and a Lagrangian subspace Λ is given as the
kernel of the 2-form ψΛ satisfying ψΛ ∧ ψΛ = ψΛ ∧ ω = 0. Fix now Λ0

spanned by e1 and e3 , corresponding to the 2-form ψ0 = e∗2 ∧ e∗4 . Obviously
Σi = ∅ if i > 2 and Σ2 = {Λ0}.

The 2-plane W ⊂ V 4 is in Σ1 if ψ0 ∧ ψW = 0 for the corresponding
2-form ψW , but ψW is distinct from ψ0 in P(Λ2(V ∗)). Writing ψW =∑

i,j yije
∗
i ∧ e∗j as before, this condition means y13 = 0. Together with the

two constraints from Equation (4.12) we get that Σ1 is the two-manifold
given by −y2

12 + y14y23 = 0 in the three-dimensional projective space (with
coordinates [y12 : y24 : y14 : y23]). The surface Σ1 then can be easily seen to
be an annulus, hence Σ = Σ1∪Σ2 is the image of S2 with one double point.

In describing the structure of Σk we will use the following proposition. For
a vector space W let s(W ) denote the vector space of symmetric bilinear
forms on W .

Lemma 4.5.10. For any Λ ∈ LGr(V, ω), there is a natural identification
TΛLGr(V, ω) ∼= s(Λ). Moreover, Σk(Λ) is a submanifold of LGr(V, ω),
whose normal space at any Λ ∈ Σk(Λ0) is identified with s(Λ0 ∩ Λ).

Proof. Let V0
∼= (R2n,Ω0) be the standard symplectic vector space with

the fixed Lagrangian Rn defining Σ. Fix a Lagrangian Λ ∈ Σk ⊂ LGr(n)
with k = dim(Λ ∩ Rn), and fix a splitting V0

∼= Λ ⊕ P , so that P is
Lagrangian. Any n-dimensional vector space L transverse to P (i.e. which
is sufficiently close to Λ) can be realized as a graph of a linear function
A : Λ→ P . Clearly,

ω(x+A(x), y +A(y)) = ω(x,A(y)) + ω(A(x), y) = ω(x,A(y))− ω(y,A(x)),
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so the graph of A is Lagrangian if and only if the quadratic function on
Λ defined by (x, y) 7→ ω(x,A(y)) is symmetric. In this way, a Lagrangian
splitting V0

∼= Λ ⊕ P determines an open neighborhood UΛ(P ) ⊂ LGr(n)
of Λ, and a diffeomorphism

(4.14) φΛ,P : UΛ(P )→ s(Λ).

Since s(Λ) is a vector space, Equation (4.14) verifies that TΛLGr(n) ∼= s(Λ).
Clearly, the subset Σk ∩ UΛ(P ) ⊂ UΛ(P ) corresponds under φΛ,P to the
symmetric bilinear forms on Λ with k -dimensional nullspace. Such a form
is determined by its nullspace N , which can be any element in the k(n−k)-
dimensional Grassmanian of k -planes in Λ, and the induced symmetric
bilinear form on N⊥ , a space which has dimension 1

2(n− k)(n− k + 1). It

follows that Σk∩UΛ(P ) is a submanifold with codimension 1
2k(k+1) in the

1
2n(n+ 1)-dimensional space LGr(n). It is easy to see that for any L ∈ Σk

there is some Lagrangian subspace P that is transverse to both L and Λ,
so that for this choice we have L ∈ Σk ∩ UΛ(P ). It follows now that Σk is
a smooth submanifold of LGr(n).

At any L ∈ UΛ(P ), the differential dL φΛ,P of φΛ,P induces an isomorphism

dL φΛ,P : TLLGr(n)→ s(Λ).

When L = Λ, we claim that the induced isomorphism

(4.15) dΛ φΛ,P : TΛLGr(n)→ s(Λ),

is independent of the choice of the complementary subspace P . To see
this, suppose that Q is another Lagrangian subspaces transverse to Λ, and
let A : (−1, 1) → Hom(Λ, P ) and B : (−1, 1) → Hom(Λ, Q) be two one-
parameter families of linear maps whose graphs in Λ ⊕ P = Λ ⊕ Q = V0

determine the same path {Lt}t∈(−1,1) so that A0 = B0 = 0 (i.e. L0 = Λ;
equivalently, the quadratic form associated to At is ΦΛ,P (Lt), and the one
associated to Bt is ΦΛ,Q(Lt)). Since both P and Q are transverse to Λ,
there is a map C : P → Λ, so that Q is the graph of C . Explicitly, for each
x ∈ Λ, there is a unique y ∈ Λ (depending on t , but we suppress this from
the notation) so that x + At(x) = y + Bt(y); and there is a unique z ∈ P
so that Bt(y) = z+C(z). Thus, x+At(x) = y+ z+C(z), so y+C(z) = x
and z = At(x); i.e.

x+At(x) = (x− C ◦At(x)) +Bt(x− C ◦At(x)).

It follows that for all v ∈ Λ we have

ω(v,At(x)) = ω(v,Bt(x− C ◦At(x))).

Differentiating with respect to t , and noting that A0 = B0 = 0, we conclude
that ω(v,A′0(x)) = ω(v,B′0(x)); i.e. dΛ ΦΛ,P = dΛ ΦΛ,Q .
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Finally, to identify the normal space at Λ to Σk , we proceed as follows.
Fix a path {Λt ∈ Σk ∩ UΛ(P )}t∈[−1,1] through Λ = Λ0 , and let {At : Λ →
P}t∈[−1,1] be a path of homomorphisms so that the graph of At is Λt , and
dim Ker(At) = k for all t . We can find a one-parameter family of bases

(e1
t , . . . , e

k
t ) for Ker(At) ⊂ Λ. Clearly, for each i, j ∈ 1, . . . , k , ω(eit, Ate

j
t ) =

0. Differentiating this equation, we find that ω(ei0, A
′
0e
j
0) = 0. Thus, the

tangent space at Λ to Σk is identified with the symmetric, bilinear forms on
Λ that vanish on Λ ∩Rn . Consequently the normal direction in TΛLGr(n)
to Σk at Λ ∈ Σk can be given by s(Λ ∩ Rn), i.e. symmetric bilinear forms
on the intersection Λ ∩ Rn . This can be summarized in the commutative
square

TΛLGr(n)
π−−−−→ NΛΣk

dΛΦΛ,P

y ∼=
y

s(Λ)
r−−−−→ s(Λ ∩ Rn).

This identification appears to depend on the choice of P . To see that it
does not, we use the fact that the isomorphism from Equation (4.15) is
independent of P , together with the following easily verified commutative
square, where L ∈ Σk ∩ UΛ(P ) and ρ, r are the natural restriction maps:

NLΣ
dLφΛ,P−−−−−→ s(Λ)

dLφL,P

y r

y
s(L)

ρ−−−−→ s(Λ ∩ L).

The above proposition identifies the fiber of the normal bundle at Λ to
Σ1(Λ) with the space of quadratic functions on the one-dimensional vector
space Λ ∩ Rn . We can thus fix a co-orientation on Σ1 by choosing the
positive quadratic functions. (Notice that Σ1 is of codimension 1.)

Using this co-orientation, Σ represents a one-dimensional cohomology class,
as follows. Given a closed, oriented loop γ0 in LGr(n), take a generic
perturbation γ of γ0 that meets Σ1 transversely, and is disjoint from all
Σk with k > 1. Such a representative can be found since Σk ⊂ LGr(n)
with k > 1 has codimension ≥ 2. The evaluation of the cohomology class
associated to Σ on γ0 is obtained by summing ±1 over each intersection
point of γ with Σ1 , where the sign is obtained by comparing the orientation
of γ with the co-orientation of Σ1 . This quantity is invariant under generic
homotopies of γ , and so determines a cohomology class, since the Σk with
k > 1 have codimension ≥ 3.
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C0

C1

C2

Λ0

Figure 4.1. Maslov cycle when n = 4 . When n = 4, the Maslov
cycle Σ(L0) is locally represented by a cone, as pictured. We have
labelled the spaces C0(Λ0) , C1(Λ0) , and C2(Λ0) .

Proposition 4.5.11. The above defined one-dimensional cohomology class
associated to Σ coincides with the universal Maslov class.

Proof. Equip Cn with its usual Hermitian form 〈v, w〉 = vt · w , whose
imaginary part is the standard symplectic form ω . Consider the path of
unitary matrices [−π

2 ,
π
2 ]→ U(n) that sends t to the diagonal matrix with

one diagonal entry eit and all other diagonal entries 1+i√
2

. This determines

a closed loop in LGr(n), and its image under det2 generates π1(S1). On
the other hand, the path crosses Σ1 at t = 0, where it looks like the graph
of the map At(e1) = tan(t)ie1 and At(ej) = iej for j > 1. In particular,
〈e1, A

′
0e1〉 = 1.

The identification dΛ φΛ,P : TΛLGr(n)→ s(Λ) of Equation (4.15) identifies
TΛLGr(n) \

⋃
k TΛΣk with the set of nondegenerate symmetric quadratic

forms. This allows us to decompose the above difference as

TΛLGr(n) \
n⋃
k=1

TΛΣk =
n⋃
k=0

Ck(Λ),

where Ck(Λ) = {v ∈ TΛLGr(n) | dΛ φΛ,P (v) has index k} . In particular,
the subset C0(Λ) corresponds to the positive definite bilinear form s over
Λ.

Example 4.5.12. In the case where V is four-dimensional, if we fix Λ ∈
LGr(V, ω), Lemma 4.5.10 gives a neighborhood of Λ which is identified with
R3 , thought of the space of symmetric matrices over R2 . The intersection of
Σ(Λ) with this neighborhood corresponds to the space of symmetric matrices
with vanishing determinant, which is a cone in R3 , see Figure 4.1. The
cone point corresponds to the singular point in the S2 from Example 4.5.9.





Chapter 5

The Morse-Smale
complex

Lagrangian Floer homology is based on Morse theory in an infinite-dimensional
setting. Before describing that invariant, in this chapter we review the clas-
sical case of Morse theory for finite-dimensional manifolds, with an eye to-
wards this infinite-dimensional generalization. For a more thorough account
in this spirit see [124, 5]; compare also [145, 76].

In Section 5.1 we describe the Morse-Smale chain complex of a Morse func-
tion on a closed n-dimensional Riemannian manifold, in Section 5.2 some
analytic results are quoted and discussed, while in Section 5.3 we show that
the homology of the Morse-Smale chain complex is an invariant of the un-
derlying manifold.

5.1. Gradient flowlines and the chain complex

In classical Morse theory, one starts with a closed, finite dimensional man-
ifold Mn , equipped with a Morse function f : M → R . We also equip M
with a Riemannian metric g , and consider the downward gradient vector

field −~∇gf . For a sufficiently generic choice of g , the classical Morse-Smale
complex is then a chain complex whose generators are critical points of the
function f , and whose differential counts gradient trajectories in a suitable
sense.

Specifically, fix critical points x and y of f . A gradient flowline (or gra-
dient trajectory) from x to y is a path γ : R→M satisfying the following
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asymptotic conditions:

(5.1) lim
t7→−∞

γ(t) = x, lim
t7→+∞

γ(t) = y

and the (downward) gradient flow equation

dγ

dt
= (−~∇gf)γ(t).

Gradient flowlines satisfy an a priori energy bound, as follows. Recall that
the energy of a smooth path γ : R→M is given by

E(γ) =

∫ +∞

−∞

∣∣dγ(t)

dt

∣∣2dt,
where the integrand is the length squared (with respect to the fixed Rie-
mannian metric g ) of the velocity of γ . For a gradient flowline,∣∣dγ(t)

dt

∣∣2 = 〈dγ(t)

dt
,
dγ(t)

dt
〉 = − d

dt
(f ◦ γ(t)),

so the energy of any gradient trajectory from x to y is given by

(5.2)

∫ +∞

−∞

∣∣dγ(t)

dt

∣∣2dt = lim
t7→−∞

f ◦ γ(t)− lim
t7→+∞

f ◦ γ(t) = f(x)− f(y).

Gradient flowlines can be collected into moduli spaces M(x,y), which in-
herit a natural topology from the C∞ topology of the space of paths from x
to y . This space admits a natural R-action: if γ is a gradient flowline and
s is a real number, then the new path τs(γ) given by t 7→ γ(t+ s) is also a
gradient flowline. The induced action on M(x,y) is called time translation.

Exercise 5.1.1. Show that if γ is a gradient flowline connecting the critical
points x and y , then τs(γ) is a gradient flowline as well. Verify that if for
some s 6= 0 we have τs(γ) = γ , then γ is a constant path and x = y .

Let M̂(x,y) denote the quotient of M(x,y) by the time translation action:

M̂(x,y) =M(x,y)/R.

These moduli spaces satisfy a certain non-degeneracy condition when the
Riemannian metric g is sufficiently generic. To formulate this condition,
recall that the index λ(p) of a critical point p of the function f on M is
the index of the Hessian of f at p . The next result follows from standard
transversality results (as it is detalied in [124], see e.g. Section 2.3.2), by
examining intersections of ascending and descending manifolds of critical
points (for their definition see [76]).
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Figure 5.1. The two-sphere with another Morse function

Theorem 5.1.2. Let Mn be an n-dimensional closed manifold and f : M →
R a given Morse function. For sufficiently generic Riemannian metric g ,
the ascending and descending manifolds of critical points intersect transver-

sally, hence the space of gradient flows M̂(x,y) is a smooth manifold whose
dimension, when x 6= y , is given by

dimM̂(x,y) = λ(x)− λ(y)− 1.

Example 5.1.3. Consider Sn ⊂ Rn+1 with the round metric and the height
function f : Sn → R. For the north and south poles (where f takes its max-
imum and its minimum) x and y the gradient flowlines are the great half-

circles connecting the two poles, hence the space M̂(x,y) is diffeomorphic
to the equatorial sphere Sn−1 . For gradient flowlines on S2 with a different
metric and Morse function, see Figure 5.1.

Theorem 5.1.2 implies that when x 6= y , and λ(x) ≤ λ(y), the moduli space

M̂(x,y) is empty for a generic metric.

If M is a smooth manifold, f is a Morse function on M , and g is a
Riemannian metric which is generic in the sense of Theorem 5.1.2 for all
pairs of critical points (i.e., the ascending and descending manifolds inter-
sect transversally), then we say that the pair (f, g) is Morse-Smale.

By choosing a (sufficiently generic) Riemannian metric g , a Morse function
f endows M with the structure of a handlebody (cf. Section 1.1) and
hence presents M as a CW complex. When the pair (f, g) is Morse-Smale,
the resulting CW chain complex, whose homology computes the singular
homology of M , has an interpretation in terms of gradient trajectories.

Specifically, the Morse-Smale chain complex, written CM∗(M,f, g), is the
vector space over F = Z/2Z generated by the critical points of f , equipped
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with the following differential:

(5.3) ∂x =
∑

{y∈Crit(f)
∣∣λ(x)−λ(y)=1}

#M̂(x,y) · y.

Here, #M̂(x,y) is the parity of the number of elements in M̂(x,y). In
order this definition to make sense we need to verify that once λ(x)−λ(y) =

1 holds, #M̂(x,y) is a finite set — we will return to this issue in the next
section. Then, as for a compact manifold M the set of critical points is
finite, the above formula of ∂ : CM∗(M,f, g)→ CM∗(M,f, g) makes sense.

Remark 5.1.4. We work here with coefficients over Z/2Z for simplicity.
By orienting the moduli spaces of gradient flows, one can lift these construc-
tions to Z; see [5, 124].

Relying on the formulation of singular homology adapted to CW-complexes,
one can directly prove that CM∗(M,f, g) is isomorphic to the cellular chain
complex provided by the CW decomposition (with Z/2Z coefficients). This
implies that CM∗(M,f, g) is a chain complex. Nonetheless, it is instructive
to show that ∂2 = 0 holds directly via analysis of moduli spaces of gradient
flowlines. This is the perspective that generalizes readily to the setting of
Floer homology.

The verification rests on a certain compactification of the moduli spaces
of gradient flowlines. In fact, this compactness result already plays a role
when making sense of Equation (5.3): according to Theorem 5.1.2, when

λ(x)−λ(y) = 1, the space M̂(x,y) is zero-dimensional; but the fact that it
is compact (and hence consists of finitely many points) needs justification.

5.2. Compactness and gluing

By the homeomorphism R ∼ (−1, 1) and the assumptions on the limits at
±∞ , a gradient flowline γ ∈ M(x,y) extends to a map γ : [−1, 1] → M ,
with γ(−1) = x and γ(1) = y . As such maps, gradient flowlines determine
path homotopy classes: define p1(x,y) as the equivalence classes of the set
of smooth maps γ : [−1, 1] → M with γ(−1) = x and γ(1) = y , where γ
and γ′ are equivalent if they are homotopic rel endpoints. Obviously, for
three critical points x,y, z , if c1 = [γ1] ∈ p1(x,y) and c2 = [γ2] ∈ p1(y, z),
then (after reparametrizing) we can concatenate them to an element c1∗c2 ∈
p1(x, z).

Definition 5.2.1. A broken flowline from x to y is a sequence of distinct
critical points x = x1, . . . ,xn+1 = y and a collection of gradient flowlines

α1, . . . , αn where αi ∈ M̂(xi,xi+1). The number n−1 is called the number
of breaks in the broken flowline.
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Definition 5.2.2. A sequence {γm}∞m=1 in M̂(x,y) is said to converge

to a broken flowline (α1, . . . , αn) (with αi ∈ M̂(xi,xi+1) non-constant

flowlines) if, for each j , we can find representatives γjm ∈ M(x,y) for

γm ∈ M̂(x,y) with the property that {γjm}∞m=1 converges to αj in the C∞,loc

topology. (Recall that γm ∈ M̂(x,y) = M(x,y)/R is itself an equivalence
class of gradient flowlines, up to reparametrization.)

It follows from the definition that the path homotopy classes of γm and
α1 ∗ . . . ∗αn are equal. Broken flowlines give a compactification of the space
of flowlines in the following sense; see [124, Section 2.4.2]:

Theorem 5.2.3. Any sequence of gradient flowlines from x to y (with
x 6= y) has a C∞,loc -convergent subsequence to a broken flowline from x to
y .

Proof. [Sketch] The crucial step in the proof of the above theorem is that

by Equation (5.2) we have the a priori estimate
∫ s2
s1

∣∣dγ(t)
dt

∣∣2dt ≤ f(x)− f(y)

for any flowline in M(x,y), showing that the flowlines (as C∞ maps from
R to M ) are uniformly equicontinuous. A similar estimate shows pointwise
convergence, hence the application of the Arzela-Ascoli theorem provides a
weakly convergent subsequence. The limit will also satisfy the gradient flow
equation, giving a component in the broken flowline compactification (in the
sense of Definition 5.2.2). Other components are obtained by a translation.

This compactification has the following immediate consequence relevant for
the Morse-Smale complex; here we provide a sketch of the argument, see [5,
Corollary 3.2.4] for a detailed proof.

Proposition 5.2.4. If g is a generic metric, then the zero-dimensional

moduli spaces M̂(x,y) with λ(x)−λ(y) = 1 are compact in the C∞ topol-
ogy.

Proof. [Sketch] According to Theorem 5.2.3, any sequence of points in

M̂(x,y) has a subsequence which converges to a broken flowline. It is now
a consequence of Theorem 5.1.2 that any broken flowline connecting x to y
with λ(x)− λ(y) = 1 is, in fact, unbroken. To see this, note that

1 =
n∑
i=1

λ(xi)− λ(xi+1),

so if n > 1, then some λ(xi) − λ(xi+1) ≤ 0; but then, by Theorem 5.1.2,

there are no flowlines in the corresponding moduli space M̂(xi,xi+1).
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In the case where the limiting broken flowline has no breaks in it, the above
notion of convergence coincides with the usual C∞ convergence of flowlines.

Proposition 5.2.4 now ensures that the moduli spaces M̂(x,y) appearing
in the definition of the boundary operator from Equation (5.3) (i.e. have

dimM̂(x,y) = 0) indeed have finitely many elements, hence ∂ is well-
defined.

We turn our attention to the analysis that shows ∂2 = 0. The idea of this
proof is to consider two-dimensional moduli spaces M(x, z) with λ(x) −
λ(z) = 2, i.e. whose unparameterized versions M̂(x, z) are one-dimensional.
In order to understand the ends of such a moduli space, we need the following
gluing result.

Theorem 5.2.5. Suppose that λ(x) = λ(y) + 1 = λ(z) + 2. Then, for a

point (α1, α2) ∈ M̂(x,y)× M̂(y, z) there is ρ0 ∈ R and a smooth map

f : [ρ0,∞)→ M̂(x, z)

such that f(ρ) converges to the broken flowline (α1, α2) as ρ→∞.

Furthermore, if a sequence {γn}∞n=1 ⊂ M̂(x, z) with λ(x) − λ(z) = 2
converges to the broken flowline (α1, α2), then for n large enough, γn ∈
f([ρ0,∞)). �

Remark 5.2.6. The proof of this result comprises two major steps. First,

we construct an approximate flowline for the given α1 ∈ M̂(x,y) and

α2 ∈ M̂(y, z) using the parameter ρ by following α1 until it reaches a
neighbourhood of y , and then connecting it inside the small neighbourhood
to the flowline α2 ; see Figure 5.2(b). In the second step, using a contrac-
tion principle on Banach spaces, this approximate flowline is modified to an
actual flowline, illustrated by Figure 5.2(c).

From the compactification by broken flowlines and the gluing results (as

described in Theorem 5.2.5), the ends of the moduli spaces M̂(x, z) with
λ(x)− λ(z) = 2 now consist of broken flowlines. In fact, a dimension count
shows that these ends all consist of moduli spaces where there is exactly one
intermediate break, i.e. the ends are contained in the Cartesian product⋃

{y∈Crit(f)
∣∣λ(x)−λ(y)=1}

M̂(x,y)× M̂(y, z).

Indeed, the above Cartesian product is precisely the set of ends of M̂(x, z).

That is, given every (one step) broken flowline in M̂(x,y)×M̂(y, z), there
is a sequence of unbroken flowlines from x to z that converges to it; in fact,
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(a) (b) (c)

x x x

y y y

z z z

Figure 5.2. The gluing of two gradient trajectories. The two
trajectories (from x to y and from y to z) is shown in (a); the figure
in (b) shows an approximate flowline, while in (c) the glued up flowline

is given.

a neighborhood of the broken flowline is identified with an interval; see [5,
Theorem 3.2.7].

Armed with this fact, and the elementary fact that any compact one-manifold
with boundary has an even number of boundary points, it follows that∑

{y∈Crit(f)
∣∣λ(y)=λ(x)−1}

#M̂(x,y) ·#M̂(y, z) ≡ 0 (mod 2).

Since the left hand side is simply the z-coefficient of ∂2x , it follows that

Proposition 5.2.7. For the boundary map ∂ defined in Equation (5.3) we
have ∂2 = 0; consequently (CM∗(M,f, g), ∂) is a chain complex. �

5.3. Topological invariance of the homology

Since the homology of the Morse-Smale complex computes the singular ho-
mology of M , it follows immediately that the homology of this complex,
which involved the choice of a Morse function and a Riemannian metric,
is independent of these auxiliary choices. This topological invariance has
an alternative verification, without appealing to the isomorphism with sin-
gular homology. As this alternative approach will serve as motivation in
Lagrangian Floer theory, we will sketch the main ideas of the invariance
proof along these lines presently.

In the following we will consider 1-parameter families of metrics or functions
interpolating our given data; using these families we define maps between the
chain complexes resulted from different auxiliary choices. The proof of ∂2 =
0 adapts to show that these maps are chain maps. Then a two-parameter
family of auxiliary choices provides a chain homotopy, which shows that the
above chain maps induce isomorphisms on homology.
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First, we consider the independence of the homology of the Morse-Smale
chain complex CM∗(M,f, g) from the choice of the Riemannian metric g ,
while fixing the Morse function f . (In the following we will drop M from
the notation, and denote the chain complex simply by CM∗(f, g).) Consider
two metrics g0, g1 , with the property that for both the gradient flow of f
is Morse-Smale. Metrics form a path-connected space, hence we can find a
smooth path of metrics {gt}t∈[0,1] connecting g0 and g1 . We now consider
trajectories γ : R→M satisfying the asymptotic conditions

(5.4) lim
t7→−∞

γ(t) = x, lim
t7→+∞

γ(t) = y

for x,y ∈ Crit(f), and the “time-dependent gradient flow” condition

(5.5)
dγ

dt
= −~∇gψ(t)

fγ(t),

for some fixed smooth, monotone function ψ : R → [0, 1] with ψ(t) = 0 for
t ≤ 0 and ψ(t) = 1 for t ≥ 1. Once again, we consider moduli spaces of
such time-dependent trajectories, which we denote by M{gt}(x,y). (We do
not record the function ψ in the notation.) Unless {gt}t∈[0,1] is constant,
Equation (5.5) is no longer invariant under time translation.

Theorem 5.1.2 has the following adaptation to the time-dependent case:

Theorem 5.3.1. Let Mn be a closed n-dimensional manifold, and let g0

and g1 be two Riemannian metrics on M . For any sufficiently generic path
of Riemannian metrics {gt} from g0 to g1 , and for x,y ∈ Crit(f) the space
of time-dependent gradient flows M{gt}(x,y) is a smooth manifold whose
dimension, when x 6= y , is given by

dimM{gt}(x,y) = λ(x)− λ(y).

These time-dependent flows are used to count coefficients in the “continua-
tion map”,

Φ{gt} : CM∗(f, g0)→ CM∗(f, g1)

defined by

(5.6) Φ{gt}(x) =
∑

{y∈Crit(f)|λ(x)=λ(y)}

#M{gt}(x,y) · y.

A map from CM∗(f, g1) to CM∗(f, g0) is defined by reversing the path of
metrics {gt}

Φ{g1−t} : CM∗(f, g1)→ CM∗(f, g0).

Our aim is to show that Φ{gt} and Φ{g1−t} are chain maps which are chain

homotopy inverses of one another. Concretely, if for i = 0, 1, ∂(i) represents
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the differential on CM∗(f, gi), then the statement that Φ{gt} and Φ{g1−t}
are chain maps amounts to the identities
(5.7)

∂(1) ◦ Φ{gt} + Φ{gt} ◦ ∂
(0) = 0 and ∂(0) ◦ Φ{g1−t} + Φ{g1−t} ◦ ∂

(1) = 0.

(Note that as we work over the field F = Z/2Z , so we are free to disregard
signs.) The statment that Φ{gt} and Φ{g1−t} are chain homotopy inverses
to one another amounts to finding operators

H(0) : CM∗(f, g0)→ CM∗(f, g0) and H(1) : CM∗(f, g1)→ CM∗(f, g1)

satisfying the identities

∂(0) ◦H(0) +H(0) ◦ ∂(0) = Id +Φ{g1−t} ◦ Φ{gt}(5.8)

∂(1) ◦H(1) +H(1) ◦ ∂(1) = Id +Φ{gt} ◦ Φ{g1−t}.

The verification of all of these identities rest on the analysis of broken flow-
lines, as we explain below.

There is a broken flowline compactification of the moduli space of time-
dependent flowlines M{gt}(x,y). In this compactification, we have two
sequences of critical points x = x1, . . . ,xn and y1, . . . ,ym = y , a sequence

of gradient flows αi ∈ M̂g0(xi,xi+1) for i = 1, . . . , n − 1, another one

βi ∈ M̂g1(yi,yi+1) for i = 1, . . . ,m − 1, and a time-dependent flowline
γ ∈M{gt}(xn,y1). An analogue of Theorem 5.2.3 states that any sequence

of time-dependent gradient flowlines from x to y has a C∞,loc -convergent
subsequence to such a broken flowline (α1, . . . , αn, γ, β1, . . . , βm).

Adapting the argument from the proof of Proposition 5.2.4 to the time-
dependent case, we conclude that if λ(x) = λ(y), the space M{gt}(x,y) is
a compact, zero-dimensional manifold. This result provides the necessary
finiteness in order to define the coefficients in the definition of Φ{gt} in
Equation (5.6).

The verification that Φ{gt} is a chain map uses the same logic that was

used in the verification that ∂2 = 0. Now, we consider the one-manifolds
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M{gt}(x,y) with λ(y) = λ(x) − 1; these moduli spaces have a compactifi-

cation M{gt}(x,y) with

∂M{gt}(x,y)

(5.9)

=
⋃

{x′∈Crit(f)
∣∣λ(x′)=λ(y)}

M̂g0(x,x′)×M{gt}(x
′,y) ∪

∪
⋃

{y′∈Crit(f)
∣∣λ(y′)=λ(x)}

M{gt}(x,y
′)× M̂g1(y′,y).

(This equation is the analogue of Theorem 5.2.5.)

The count of points in the space on the right-hand-side of Equation (5.9) is
the coefficient of y in

Φ{gt}(∂
(0)(x)) + ∂(1)(Φ{gt}(x)).

Since the number of ends of {M{gt}(x,y)
∣∣λ(x)−λ(y) = 1} is zero, counting

points in Equation (5.9) gives the first identity from Equation (5.7). Revers-
ing the roles of g0 and g1 , and using the path of metrics {g1−t} gives us
the second identity.

The construction of the homotopy operator H involves two-parameter spaces
of metrics. Let {gr,t}r∈[0,∞),t∈R be a smooth two-parameter family of met-
rics with the following properties:

• gr,t = g0 if |t| ≥ r

• there is some R > 1 so that for all r ≥ R , and t ≥ 0, gr,t = gψ(r−t)

• for r ≥ R and t ≤ 0, gr,t = gψ(r+t) .

It follows from the above conditions that g0,t = g0 and gr,t = g1 when |t| <
r − 1. It is easy to construct a continuous two-parameter space of metrics
as above with R = 1, which is smooth away from (r, t) ∈ [0, 1]× {0} . The
desired family is obtained by smoothing out this family in a neighborhood
of the interval. In particular, for large enough fixed r the family {gr,t}
looks like the path of metrics {gt} , separated from {g1−t} by a long time
(depending on r ) where it is constant (at g1 ). See Figure 5.3 for a schematic
illustration.

There is a corresponding moduli space M{gr,t}(x,y) consisting of pairs of
a real number r ∈ [0,∞) and a path γ : R→M with the usual asymptotic
conditions (as given in Equations (5.1) or (5.4)) and the time-dependent
gradient flow equation

dγ

dt
= −~∇gr,tfγ(t).
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R

g0

g0

gr−t

gr+t

g1

t

r

Figure 5.3. Schematics of a two-parameter family of metrics
used to construct H(0) . The shading indicates regions where the
metric is locally constant.

The analogue of Theorem 5.3.1 shows that for generic choice of {gr,t} ,
the moduli space M{gr,t}(x,y) of such pairs is a manifold of dimension
λ(x)− λ(y) + 1. The additional dimension here comes from the additional
parameter r in the moduli space.

There is also a broken flowline compactification of M{gr,t}(x,y), which has
two new kinds of ends, covering the ends r = 0 and r =∞ of the parameter
space. Explicitly, consider a sequences of points (ri, γi) in M{gr,t}(x,y).
Such a sequence could have a subsequence that converges to another point
in M{gr,t}(x,y). Otherwise, projecting to the r coordinate, and passing to
a subsequence, we find the following three kinds of behavior.

(E-1) ri converge to some value ρ ∈ (0,∞). In that case, the γi will
converge to a broken time-dependent flowline with respect to the
path of metrics {gr=ρ,t}t∈[−ρ,ρ] .

(E-2) ri converge to 0, in which case {γi} has a subsequence that con-
verge to a (possibly broken) gradient flowline for the g0 metric.

(E-3) ri converge to ∞ , in which case {γi} converge to a juxtaposition of
two (possibly broken) time-dependent flowlines, starting with one
for the {gt} metric family, followed by one for the {g1−t} .

In the cases where λ(y) = λ(x)+1, the above compactification and transver-
sality show that M{gr,t}(x,y) is a compact, 0-dimensional space, so we can
define

H(0) : CM∗(f, g0)→ CM∗+1(f, g0)
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by

H(0)(x) =
∑

{y∈Crit(f)|λ(y)=λ(x)+1}

#M{gr,t}(x,y) · y.

To prove Equation (5.8), we consider moduli spaces M{gr,t}(x,y) where
λ(y) = λ(x). Transversality ensures that for the ends of these 1-dimensional
moduli spaces, the flows appearing in Cases (E-2) and (E-3) are unbroken;
while those appearing in Case (E-1) have exactly one break. The gluing
result then identifies the ends of M{gr,t}(x,y) with the following union: ⋃

x′ ∈ Crit(f) s.t.
λ(x′) = λ(x)− 1

M̂g0(x,x′)×M{gr,t}(x
′,y)

 ∪
 ⋃

y′ ∈ Crit(f) s.t.
λ(y′) = λ(y) + 1

M{gr,t}(x,y
′)× M̂g0(y′,y)


∪ M̂g0(x,y)

∪

 ⋃
{z∈Crit(f)|λ(x)=λ(z)}

M{gt}(x, z)×M{g1−t}(z,y)

 .

The three lines correspond to the ends described in Cases (E-1), (E-2), and
(E-3) respectively. Counting points in the four unions gives, in order, the
four terms appearing in Equation (5.8); and thus the relation holds because
the one-dimensonal manifold obtained by compactifying Mgr,t(x,y) with

λ(x) = λ(y) has an even number of boundary points. The operator H(1)

is constructed similarly, reversing the roles of g0 and g1 and replacing {gt}
by the path {g1−t} ; its homotopy formula follows.

The arguments so far show that the homology HM∗(M,f, g) = H∗(CM∗(M,f, g), ∂)
is independent of the choice of g . To show that HM∗(M,f, g) is indepen-
dent of the choice of f proceeds in a very similar manner. In that case, we
fix a one-parameter family {ft} of functions that interpolate between two
fixed Morse functions f0 and f1 . A continuation map is now defined by
counting time-dependent gradient trajectories, satisfying

dγ

dt
= −~∇gfψ(t) = (−~∇gfψ(t))γ(t).

Again, we collect these trajectories into moduli spaces M{ft}(x,y), where
x ∈ Crit(f0) and y ∈ Crit(f1). For a sufficiently generic choice of g these
moduli spaces are manifolds of dimension λ(x)− λ(y).

We define a continuation map

Φ{ft} : CM∗(f0, g)→ CM∗(f1, g)
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by the formula

Φ{ft}(x) =
∑

{y∈Crit(f1)|λ(x)=λ(y)}

#M{ft}(x,y) · y.

Compactness of moduli spaces ensure that the above counts are finite. Anal-
ysis of ends of one-dimensional moduli spaces shows that the map Φ{ft} is
a chain map. Using (generic) two-parameter families of functions, we define
a homotopy operator analogous to the one we defined for two-parameter
families of metrics. Again, an analysis of one-dimensional moduli spaces
with respect to this two-parameter family of functions shows that Φ{ft} and
Φ{f1−t} are homotopy inverses to one another. Thus, Φ{ft} induces an iso-
morphism on homology. To fill in the details of this sketch requires more
work; the reader is referred to [10, 6, 5, 124].

Morse theory can be adapted to more general settings. With little extra
work, the compactness hypothesis on M can be weakened, requiring the
Morse function to be proper. More interestingly, Morse theory can be done
in infinite-dimensional settings, as well. A classical application is to the
space of paths in a Riemannian manifold, using an energy functional, whose
critical points are geodesics. In this case, although the space is infinite-
dimensional, the Hessian nonetheless has finite index, so one can show that
the space of paths has the structure of a CW complex; see [78] for a beautiful
account of this version. Lagrangian Floer homology, however, will live in a
setting where the critical points in an infinite dimensional manifold have
Hessians with infinitely many positive as well as negative eigenvalues, hence
the index no longer makes sense. The new ideas required in this setting will
be discussed in the next chapter.





Chapter 6

An overview of
Lagrangian Floer
homology

Heegaard Floer homology is based on some constructions in symplectic ge-
ometry: specifically, Andreas Floer’s homology theory for Lagrangian sub-
manifolds of a symplectic manifold. In the construction we will need, the
ambient symplectic manifold will always be the symmetric product of a Rie-
mann surface (discussed in Chapter 7) and the Lagrangian submanifolds will
always be tori. However, the reader might find it convenient to have these
constructions presented in a more general context; and that is the purpose
of the present chapter. This chapter is not intended to be a comprehen-
sive introduction to this vast and growing subject: for that, we refer the
interested reader to other sources [28, 119, 125]. Nevertheless, some of the
definitions given in this chapter will be used in our further discussions.

After introducing the main concepts and Arnold’s conjecture in Section 6.1,
in Section 6.2 we give a short motivation how Lagrangian Floer homology
can be used to address these conjectures. In Section 6.3 we motivate the
definition of Lagrangian Floer homology, while in Sections 6.4 and 6.5 we
start the systematic study of Whitney disks and their Maslov indices. Sec-
tions 6.6, 6.7 and 6.8 give some of the analytic details one needs to set up
the theory: we briefly discuss transversality, compactness and gluing. The
independence on the choice of the almost-complex structures, and invariance
under Hamiltonian isotopy for Lagrangian Floer homology is discussed in
Section 6.9.

119
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6.1. Hamiltonian diffeomorphisms and their
fixed points

Special symplectomorphisms can be generated on symplectic manifolds via
the following construction.

Definition 6.1.1. Fix a symplectic manifold (M,ω). Let H : R ×M →
R be any smooth function, and consider the (time dependent) vector field
Xt satisfying ιXtω = dHt , where Ht(x) = H(t, x) and ιXtω denotes the
contraction of ω with the vector field Xt . Such a vector field Xt is called
a Hamiltonian vector field . A diffeomorphism φ : (M,ω) → (M,ω) is
called a Hamiltonian diffeomorphism if it is the time-one map of a
Hamiltonian vector field; i.e. if φ(x) = Φ1(x) where {Φt : M → M}t∈[0,1]

is the one-parameter family of diffeomorphisms satisfying:

• dΦt
dt = (Φt)∗(Xt) and

• Φ0 = IdM .

Proposition 6.1.2. A Hamiltonian diffeomorphism is a symplectomorphism.

Proof. A standard computation shows that

d

dt
Φ∗t (ω) = Φ∗t (LXt(ω)),

where LXt(ω) denotes the Lie derivative of ω in the direction Xt . Cartan’s
formula states that LXt(ω) = d(ιXtω) + ιXt(dω). Since ω is closed and
ιXtω = dHt , this Lie derivative vanishes. It follows that Φ∗t (ω) is indepen-
dent of t , so Φ∗1(ω) = Φ∗0(ω) = ω .

Using a 1-parameter family {Φt} (with Φ0 = IdM ) of symplectomorphisms
(or Hamiltonian diffeomorphisms) we can talk about symplectic (or Hamil-
tonian) isotopic submanifolds.

Exercise 6.1.3. (a) Show that if η = dh for a function h : L → R then
the graph Γη of η in T ∗L (as defined in Exercise 4.2.5) is a Legendrian
submanifold Hamiltonian isotopic to the 0-section L ⊂ (T ∗L,−dλ).

(b) Equip M ×M with the symplectic structure described in Example 4.2.6.
Show that if the symplectomorphism φ : M → M is a Hamiltonian diffeo-
morphism, then the graph Γφ ⊂ M × M is Hamiltonian isotopic to the
diagonal ∆ = {(p, p) | p ∈M}.

Example 6.1.4. Not every symplectomorphism is Hamiltonian: Hamilton-
ian symplectomorphisms are isotopic to the identity. Even symplectomor-
phisms which are isotopic to the identity might not be Hamiltonian; see for
example [75, Example 10.6].



6.1. Hamiltonian diffeomorphisms and their fixed points 121

Hamiltonian diffeomorphisms are rather special maps. Suppose that L ⊂
(M,ω) is a Lagrangian submanifold in a symplectic manifold, and f : M →
M is a diffeomorphism smoothly isotopic to the identity. Then basic alge-
braic topology implies that if L and f(L) intersect transversally, then (as
the normal bundle of L is isomorphic to T ∗L) we have that for any field F

|L ∩ f(L)| ≥
∣∣χ(L)| = |

n∑
i=0

(−1)ibi(L;F)
∣∣,

where here |L∩ f(L)| denotes the number of points in the intersection of L
with f(L).

By contrast, the Arnold conjecture gives a nice illustration of symplectic
rigidity, giving a stronger lower bound on the number of intersection points
between L and a Hamiltonian isotopic copy of L .

Conjecture 6.1.5. (Arnold, cf. [75, Conjecture 1.30]) Fix a field F. If L is
a closed Lagrangian submanifold in the closed symplectic manifold (M2n, ω)
and φ : M2n → M2n is a Hamiltonian diffeomorphism, with the property
that L and φ(L) intersect transversally, then

|L ∩ φ(L)| ≥ dimFH∗(L;F) =
n∑
i=0

bi(L;F),

where here |L∩ φ(L)| denotes the number of points in the intersection of L
with φ(L).

As a special case (where the ambient symplectic manifold is (M×M,p∗1(ω)−
p∗2(ω)), and the Lagrangian is the diagonal), we have the following:

Conjecture 6.1.6. Fix a field F. Let φ : M → M be a Hamiltonian dif-
feomorphism of M , all of whose fixed points are non-degenerate. Then the
number of fixed points of M is at least dimFH∗(M ;F).

Note the importance of having a Hamiltonian isotopy and not only a sym-
plectic isotopy: the rotation of the symplectic torus encountered in Exam-
ple 6.1.4 has no fixed points, and it is easy to find a Legendrian circle which
is displaced disjointly, hence both Conjecture 6.1.5 and Conjecture 6.1.6 fail
for this (non-Hamiltonian) symplectomorphism.

When F = Z/2Z and π2(M,L) = 0, Conjecture 6.1.5 was verified by
Floer [21]; we will discuss some of the techniques that go into its proof
in this chapter.
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6.2. Motivation

The main idea Floer invented to prove Conjecture 6.1.5 in the special case
mentioned above is now called Floer homology (or, more precisely, La-
grangian Floer homology). In [22] these homology groups are introduced
for symplectic manifolds (M,ω) with π2(M) = 0 and π2(M,L) = 0, see

To this end, Floer defined a chain complex over F = Z/2Z , the Lagrangian
Floer complex CF(L0, L1), associated to pairs of transversally intersecting,
compact, oriented Lagrangian submanifolds L0 and L1 . For simplicity,
assume that π2(M) = π2(M,L0) = π2(M,L1) = 0. The chain complex is
defined with the help of certain auxiliary choices, and it satisfies the following
properties:

(1) Generators for CF(L0, L1) are intersection points of L0 with L1 .

(2) The homology groups HF (L0, L1) of the complex CF(L0, L1) are
independent of the auxiliary choices; i.e. they depend only on the
symplectic manifold and its two Lagrangian submanifolds. These
homology groups HF (L0, L1) are called the Lagrangian Floer ho-
mology of the Lagrangians L0 and L1 .

(3) The homology groups HF (L0, L1) are invariant under Hamiltonian
isotopy, in the following sense. If φ0 : M → M and φ1 : M →
M are two Hamiltonian diffeomorphisms, and φ0(L0) and φ1(L1)
intersect transversally, then

HF (L0, L1) ∼= HF (φ0(L0), φ1(L1)).

This property allows us to extend HF (L0, L1) to cases where L0

and L1 do not intersect transversally: in this case, let L′1 be a
Hamiltonian translate of L1 which intersects L0 transversally, and
define HF (L0, L1) as HF (L0, L

′
1).

(4) The homology groups HF (L,L) are isomorphic to the singular
homology of L (with Z/2Z coefficients).

(5) The Floer homology groups HF (L0, L1) are graded by Z/2Z , in
the following way. If L0 and L1 are oriented, each intersection
point of L0 with L1 has a local intersection number i(x). The
Z/2Z grading gr(x) of a generator x ∈ L0 ∩ L1 is determined by

(−1)gr(x) = i(x).

The existence of a theory satisfying the first four of the above properties im-
mediately implies the Arnold Conjecture. Moreover, in view of the first three
properties, Lagrangian Floer homology can be thought of as an obstruction
to making L0 disjoint from L1 via Hamiltonian isotopies. Note that if L0
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and L1 are oriented, there is a classical algebro-topological obstruction for
making the two Lagrangians disjoint, provided by the oriented intersection
number of L0 with L1 , which we write #(L0 ∩L1) (though, of course, that
is invariant under much more general motions of L0 and L1 ). In view of
the final property, Lagrangian Floer homology is a homology theory whose
Euler characteristic is this intersection number.

The original set-up of Floer can be generalized in various directions. For
example, one can relax the hypothesis on the second homotopy groups; or
one may wish to work with coefficients over other rings. For further advances
in this theory, and generalizations of Floer’s result, see [28, 29, 108]. For
example, Conjecture 6.1.6 was proved for F = Q by Fukaya-Ono [29].

6.3. The action functional

Lagrangian Floer homology HF (L0, L1) is an adaptation of Morse theory
for a functional on an infinite-dimensional space, where the critical points
of the functional correspond to intersection points between L0 and L1 ,
and the gradient flowlines correspond to certain pseudo-holomorphic curves.
(See [63, 18] for some other versions of Floer homology.) The aim of the
present section is to given an informal account of how the Lagrangian Floer
complex can be obtained from this infinite-dimensional point of view.

The basic set-up is a symplectic manifold (M2n, ω) equipped with a pair of
compact Lagrangian submanifolds L0 and L1 . Consider the space of paths
from L0 to L1 in M , i.e.

(6.1) V = {γ : [0, 1]→M | γ(0) ∈ L0, γ(1) ∈ L1}.

For simplicity, think of these paths as being smooth. The space of paths
splits into path components, indexed by homotopy classes of paths in V .

We would like to think of the space V as an infinite-dimensional manifold.
A path in the path space is naturally a map u : [0, 1]× [0, 1]→M2n , where
we name coordinates in [0, 1]× [0, 1] by (t, s) satisfying the constraints that
for all t ∈ [0, 1], u(t, 0) ∈ L0 and u(t, 1) ∈ L1 . Let γ(s) = u(0, s) ∈ V .
A tangent vector at γ is a tangent vector field v : [0, 1] → TM lifting γ ,
satisfying the conditions that

v(0) ∈ Tγ(0)L0 ⊂ Tγ(0)M v(1) ∈ Tγ(1)L1 ⊂ Tγ(1)M.

To simplify our discussion, we begin with the case where the symplectic
manifold (M2n, ω) is exact, so that ω = dα , and the Lagrangians are exact,
in the following sense:
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Definition 6.3.1. Let (M2n, dα) be an exact symplectic manifold. A La-
grangian submanifold L ⊂M is called exact if there is a function f : L→ R
so that α|L = df .

For example, the graph of an exact 1-form on a manifold L is an exact
Lagrangian submanifold in the exact symplectic manifold T ∗L .

Suppose that L0 and L1 are exact Lagrangians, and choose fi for i = 0, 1
with α|Li = dfi . There is a real valued action functional on V , defined by
the expression

(6.2) A(γ) = f0(γ(0))− f1(γ(1)) +

∫
[0,1]

γ∗(α).

It is convenient to reformulate the action as follows. Suppose that γ0 and γ1

are elements of V that are in the same path component; i.e. there is a map
u : [0, 1] × [0, 1] → M so that for all t ∈ [0, 1], u(t, 0) ∈ L0 , u(t, 1) ∈ L1 ;
and u(0, s) = γ0(s) and u(1, s) = γ1(s). Then, by Stokes’ theorem,

(6.3) A(γ1)−A(γ0) =

∫
(t,s)∈[0,1]×[0,1]

u∗(ω).

Floer homology will be constructed by applying Morse theory to this action
functional. Thus, the first step is to identify its critical points.

Proposition 6.3.2. The critical points of A are the constant paths γ : [0, 1]→
L0 ∩ L1 ; i.e. they correspond to points in L0 ∩ L1 .

Proof. A path γ : [0, 1] → M with γ(0) ∈ L0 and γ(1) ∈ L1 is a critical
point for A if for every smooth extension of γ(s) to u : [−ε, ε] × [0, 1] →
M so that u(t, 0) ∈ L0 and u(t, 1) ∈ L1 , and γ(s) = u(0, s), the value
t = 0 is a critical point for the real-valued function on [−ε, ε] given by
t 7→ A(u|{t}×[0,1]). But

d

dt

∣∣∣
t=0
A(u|{t}×[0,1]) =

∂

∂t

∣∣∣
t=0

∫
[0,t]×[0,1]

u∗(ω)

=
∂

∂t

∣∣∣
t=0

∫
[0,t]×[0,1]

ω(
∂u

∂t
,
∂u

∂s
) dt ∧ ds

=

∫
[0,1]

ω(
∂u

∂t
,
∂u

∂s
)ds.

Clearly, if γ is a constant path, we have ∂u
∂s ≡ 0, so d

dt

∣∣∣
t=0
A(u|{t}×[0,1]) = 0

for all variations u . Conversely, since v(s) = ∂u
∂t (0, s) can be chosen to be
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an arbitrary smooth function with compact support in (0, 1), and ω is non-
degenerate, we can conclude that at each critical point we have ∂u

∂s ≡ 0; i.e.
γ(s) = u(0, s) is a constant path.

Having fixed ω , we choose an ω -compatible almost-complex structure J ,
which in turn gives a Riemannian metric on M . A Riemannian metric on
M naturally gives rise, at least formally, to a Riemannian metric on the
space of paths, by the formula

〈v, w〉 =

∫
γ
〈v(s), w(s)〉ds,

where v and w are two vector fields along the path γ .

In computing the gradient of A , we use the computation from the proof of
Proposition 6.3.2. For a one-parameter variation of paths, we find that

∂

∂t

∣∣∣
t=0
A(s 7→ u(t, s)) =

∫
[0,1]

ω(v,
∂u

∂s
)ds,

where v(s) = ∂u
∂t (0, s). Since ω(v, ∂u∂s ) = −g(v, J ∂u∂s ), it follows that the

gradient ~∇Aγ ∈ TγV of A at γ is the vector field along γ given by

s 7→ −Jγ(s)
dγ

ds
.

Let x and y be two intersection points between L0 and L1 . An upward gra-
dient flowline for the action functional connecting x to y can be formulated
as a pseudo-holomorphic strip; i.e. a map u : R × [0, 1] → M2n satisfying
the following partial differential equation, a version of the Cauchy-Riemann
equations:

(6.4)
∂u

∂t
+ J

∂u

∂s
= 0,

subject to the boundary conditions

u(t, 0) ∈ L0 u(t, 1) ∈ L1

(for any t ∈ R), and asymptotics:

lim
t→−∞

u(t, s) = x lim
t→+∞

u(t, s) = y,

in the sense that u|t×[0,1] converges as t → −∞ uniformly to the constant
function x (and similarly for t→∞ with y).

The reader should keep in mind that the endomorphism J on Tu(t,s)M
2n

appearing in Equation (6.4) depends on the value u(t, s); it would be more
precise to express Equation (6.4) as

∂u

∂t
+ Ju(t,s)

∂u

∂s
= 0,
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calling attention to the non-linear character of the Cauchy-Riemann equa-
tions.

The above discussion can be generalized to cases where M and the La-
grangian submanifolds are not necessarily exact. In this case, we define the
action functional on the path components of V , using Equation (6.3) as a
definition. First, it is well defined only up to an overall additive constant.
But more significantly, the value of A(γ1)−A(γ0) depends on the choice of
the path u in V , at least up to homotopy. However, if we consider elements
γ0 and γ1 of V that are sufficiently close, Equation (6.3) makes sense, pro-
vided we choose the path u to be sufficiently short; i.e. A is well-defined
locally, so that its derivative

dAγ : Γ(γ∗(TM))→ R,

which is given by v 7→
∫

[0,1] ω(v, ∂u∂s )ds is a closed 1-form on V , which is

dual to the vector field −J ∂
∂s . In this case, the Cauchy-Riemann equations

are still the suitable analogues of the gradient flow equations.

The term “pseudo-holomorphic strip” is meant to remind the reader that
the complex structure J on the target M is not necessarily integrable. In
cases where the complex structure is integrable, i.e. the target is a complex
manifold, the notion agrees with the standard notion of holomorphic map.

Since we are about to study the Morse-Smale complex, it is important to
understand what it means for a critical point (i.e. an intersection point
between L0 and L1 ) to be non-degenerate. We claim that if γ : [0, 1]→M
is the constant path at x , thought of as an element of V , then the Hessian
of A at γ is, formally, the operator v 7→ −J dvds , where v ∈ TγV ; and
so the null-space of the Hessian is identified with the space of vectors in
TxL0 ∩ TxL1 .

To justify this, recall the description of the Hessian Hessp : TX → TX at a
critical point p of a function f : X → R for a finite dimensional manifold X
from Equation (1.1). In this spirit, suppose that u : [−ε, ε]× [−ε, ε]× [0, 1]→
M is a two-parameter family of paths, indexed by (τ, t) ∈ [−ε, ε]×[−ε, ε] and
with u(0, 0, s) = γ(s). Denote the two tangent vectors in TγV corresponding

to ∂
∂t

∣∣∣
t=0

u(0, t, s) and ∂
∂τ

∣∣∣
τ=0

u(τ, 0, s) by ξ, η ∈ TγV .

To compute the Hessian, we consider the above map u as a map u : [−ε, ε]×
[−ε, ε]→ V , with ∂u

∂τ = ξ and ∂u
∂t = η . Now,

η̃(A ◦ u) = 〈~∇A, ∂u
∂t
〉TV =

∫
[0,1]
〈−J ∂u

∂s
,
∂u

∂t
〉TM
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The Hessian, which is characterized by, 〈HessA(ξ), η)〉 = ξ(η̃A), is computed
by

ξ(η̃(A ◦ u)) =
∂

∂τ
|(τ,t)=(0,0)

∫
[0,1]
〈−J ∂u

∂s
,
∂u

∂t
〉TM

=
∂

∂τ
|(τ,t)=(0,0)

∫
[0,1]
〈J ∂u
∂t
,
∂u

∂s
〉ds

=

[∫
[0,1]
〈J ∂u
∂t
,
∂2u

∂s∂τ
〉ds

]
(τ,t)=(0,0)

=

[∫
[0,1]
〈−J ∂2u

∂s∂τ
,
∂u

∂t
〉ds

]
(τ,t)=(0,0)

=

∫
[0,1]
〈−J ∂ξ

∂s
, η〉ds.

Thus, the Hess = −J ∂ξ∂s .

It follows that the action functional is formally a non-degenerate Morse func-
tion if and only if L0 and L1 intersect one another transversely. Specifically,
at a critical point u0 , which corresponds to an intersection x ∈ L0 ∩ L1 ,
a tangent vector ξ ∈ Tu0V is a map v : [0, 1] → TxM with v(0) ∈ TxL0

and v(1) ∈ TxL1 . That tangent vector lies in the nullspace of the Hes-
sian if the tangent vector v is constant; i.e. v corresponds to a vector in
(TxL0) ∩ (TxL1).

Unlike the finite-dimensional case, the gradient does not really define a
flow, in the usual sense, on the space of paths from L0 to L1 . In the
finite-dimensional case, the gradient flow equation is an ordinary differen-
tial equation, while in the present case, pseudo-holomorphic strips satisfy a
partial differential equation.

There is another feature that distinguishes the classical case from the case
for Lagrangian intersections: the Hessian at a critical point does not have
finite index, that is, has infinitely many negative and positive eigenvalues.
For example, if the target manifold is C , L0 = R and L1 = e2πiθ ·R , and we
consider the constant path (at the origin), the eigenvectors for the Hessian

are functions of the form s 7→ re2πis(θ+n) for n ∈ 1
2Z and the eigenvalues of

the Hessian are 2π(θ + 1
2Z). In particular, the intersection point 0 ∈ C is

non-degenerate when L0 6= L1 (i.e. θ 6∈ 1
2Z). However, there are infinitely

many negative and positive eigenvalues.
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Nonetheless, there is a quantity, the Maslov index, which plays the role of
the difference in indices between two critical points. To formulate its prop-
erties, it is helpful to formalize the algebraic topology underlying pseudo-
holomorphic strips.

6.4. Whitney disks

Having motivated the study of pseudo-holomorphic disks, we turn now to
the more systematic study of the objects needed to be defined in the La-
grangian Floer context. In this direction, we find it convenient to formalize
the boundary conditions placed on pseudo-holomorphic strips in the previ-
ous section, as follows:

Definition 6.4.1. Fix x,y ∈ L0 ∩L1 . A Whitney strip from x to y is
a continuous map u : R × [0, 1] → M2n satisfying the boundary conditions
u(R× {0}) ⊂ L0 , u(R× {1}) ⊂ L1 , and the asymptotics

lim
t→−∞

u(t, s) = x lim
t→+∞

u(t, s) = y.

It is natural to reformulate these conditions in terms of maps of disks, as
follows.

Definition 6.4.2. Let D denote the standard unit disk in C, and fix x,y ∈
L0∩L1 . A Whitney disk from x to y is a continuous map u : D→M2n

satisfying the boundary conditions:

u(z) ∈ L0 if |z| = 1 and Re(z) > 0; u(z) ∈ L1 if |z| = 1 and Re(z) < 0.

u(−i) = x u(i) = y

Each pseudo-holomorphic strip gives rise to a Whitney disk in the above
sense, using a conformal diffeomorphism R × [0, 1] ∼= D \ {±i} , sending
R× 0 to the semicircle in ∂D with Re(z) > 0.

Remark 6.4.3. The domain of a Whitney disk is a disk with two distin-
guished points on its boundary. Later, we will consider analogues with more
distinguished boundary points, leading us to Whitney polygons (see Sec-
tion 6.10); in those cases, we will refer to the above “Whitney disks” as
Whitney bigons.

Definition 6.4.4. Let D denote the standard unit disk in C, and fix x,y ∈
L0∩L1 . Fix two Whitney disks u0 and u1 from x to y . A homotopy from
u0 to u1 is a continuous, one-parameter family of Whitney disks from x to
y ; more precisely, it is a map u : D × [0, 1] → M satisfying the conditions
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(with z ∈ D and t ∈ [0, 1])

u(z, t) ∈ L0 if |z| = 1 and Re(z) > 0 u(z, t) ∈ L1 if |z| = 1 and Re(z) < 0
u(−i, t) = x u(i, t) = y

u(z, 0) = u0(z) u(z, 1) = u1(z).

The set of homotopy classes of Whitney disks from x to y is denoted
W (x,y). Whitney disks can be composed, providing a map ∗ : W (x1,x2)×
W (x2,x3)→W (x1,x3) as follows:

Definition 6.4.5. Given x1 , x2 , x3 ∈ L0 ∩ L1 , and Whitney disks u1

from x1 to x2 and u2 from x2 to x3 , there is a natural juxtaposition
u1 ∗ u2 , which is a Whitney disk from x1 to x3 . To define this, use the
quotient map q : D → D ∨ D, where first we take the map from D to the
quotient space gotten by collapsing the real interval to a point, and then
using a homeomorphism between this quotient space with

D ∨ D =
D1
∐

D2

(i ∈ D1) ∼ (−i ∈ D2)
.

The map u1 ∗ u2 is the composite

D q→ D ∨ D u1∨u2→ M.

Remark 6.4.6. The set W (x,y) can be identified with the set of homotopy
classes of maps connecting x and y , where x and y are regarded as elements
of V (as constant maps). In this approach, the juxtaposition defined above
corresponds to juxtaposition of paths. The set W (x,y) can be identified
(but not canonically) with the group W (x,x) ∼= π1(V,x). To understand
this group better, observe that evaluation at the two endpoints induces a
fibration V → L0 × L1 . The homotopy fiber of this map is identified with
the loop space Ω(M) (based at any point in M ). It follows that there is a
short exact sequence

π2(M)→ π1(V)→ π1(L0)⊕ π1(L1)→ 0.

For each x ∈ L0∩L1 , there is an action of π2(M,L0; x) on the set W (x,y).
This action can be defined by simply viewing an element ψ of π2(M,L0; x)
as an element of W (x,x), and then letting the action of ψ on φ ∈W (x,y)
be the juxtaposition of these two disks. We denote this action by ψ ?0 φ . It
is easy to check that (ψ ?0 φ1) ∗ φ2 = ψ ?0 (φ1 ∗ φ2).

Suppose that u is a Whitney disk from x to y , and suppose that v : D→M
is a continuous map with the property that v(∂D) ⊂ L0 , and v(i) = u(1).
Then, u and v can be combined to give a continuous map from D to M , by
composing D→ D∨D with the map u∨v : D∨D→M . It is straightforward
to check that [u ∨ v] = [v′] ? [u] , where v′ ∈ π2(M,L0,x) is the homotopy
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class obtained by acting on v ∈ π2(M,L0, u(1)) by some path from x to
u(1).

Similarly, ψ ∈ π2(M,L1; x) also acts on φ ∈ W (x,y); that action is now
denoted φ ?1 ψ ∈W (x,y).

Finally, S ∈ π2(M ; x) acts on φ ∈ W (x,y) via the natural quotient map
π2(M ; x) → π2(M,L0; x). We denote the result by φ ? S ∈ W (x,y). This
has a similar geometric interpretation: if u is a Whitney disk from x to
y , and f : S2 → M is a map with u(0) = f(p) for some p ∈ S2 , then
we can join these two maps by composing D → D ∨ S2 with the map
u ∨ f : D ∨ S2 → M . Then, [u ∨ f ] = [u] ? [f ′] , where f ′ ∈ π2(M ; x) is
obtained by acting on v ∈ π2(M ;u(0)) by some path. (This path in turn
can can be taken to be the image under u of any path connecting 0 with
−i .)

6.5. The Maslov index

Thinking of an intersection point x ∈ L0 ∩ L1 as a critical point of the
action functional, the corresponding Hessian has infinitely many negative
and positive eigenvalues. Nonetheless, if x and y are two intersection points,
there is an associated integer, the Maslov index, that behaves like the index
difference λ(x) − λ(y). The Maslov index will depend on a little more
data than just the endpoints x and y : it will be a homotopy invariant of
Whitney disks. We give a construction presently; and refer the interested
reader to [116].

Suppose that u : R× [0, 1]→M2n is a Whitney strip. The bundle u∗(TM)
is a bundle of symplectic vector spaces over R × [0, 1], with Lagrangian
subbundles (u|R×{0})∗(TL0) and (u|R×{1})∗(TL1) over R×{0} and R×{1} ,
respectively.

In particular, for fixed t ∈ R , Vt = u∗(TM)(t,0) is a symplectic vector space

with Lagrangian subspace Λt0 = (u|R×{0})∗(TL0)(t,0) . Parallel transport
across {t} × [0, 1] (cf. Section 4.5.1) identifies the symplectic vector spaces
u∗(TM)(t,1) with u∗(TM)(t,0) ; thus, the Lagrangian (u|R×{1})∗(TL1)(t,1)

can be transported to give a new Lagrangian Λt1 inside Vt . Under the
identification LGr(Vt) ∼= U(n)/O(n) that identifies Λt0 with the identity
coset (cf. Remark 4.5.2), the Lagrangian subspace Λt1 corresponds to an
element Λt ∈ U(n)/O(n). (See also the end of Section 4.5 for a discussion
on parallel transport.)

Recall that U(n)/O(n) contains a stratified, co-oriented subset Σ = Σ(Rn) ⊂
U(n)/O(n), the Maslov cycle, as specified in Equation (4.13).
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y

x

L0L1

L0L1

y

x

Figure 6.1. The Maslov index in the plane. In the two pictures,
we have Lagrangians L0 and L1 which are contained in the plane. The
shadings represent two homotopy classes of disks from x to y . Com-
paring the tangent spaces to the red and the blue curves, it is easy to
see that the first disk has Maslov index 1 and the second has Maslov
index 2.

Definition 6.5.1. The intersection number of the curve {Λt}t∈R with the
Maslov cycle Σ is the Maslov index of u. It is denoted µ(u).

The intersection number is well-defined since limt7→±∞ Λt 6∈ Σ. The fol-
lowing operations change the path by a homotopy fixing the asymptotics:
moving u by a homotopy of Whitney disks, and changing the symplectic
connection used for parallel transport. It follows that the Maslov index is
independent of these choices.

See Figure 6.1 for some examples, in cases where M2n = C , and L0, L1 are
the red and blue curves.

We establish a few further properties of the Maslov index in Proposition 6.5.4
below, using a slightly different construction for it, which we give after
setting up a few preliminaries.

For the following definition, recall that for each Λ0 ∈ LGr(V, ω), there is a
subset C0(Λ) ⊂ TΛ0LGr corresponding to the positive bilinear forms over
the vector space Λ0 (cf. Proposition 4.5.11). For any path Λ: [0, 1] →
LGr(V, ω) with Λ(0) = Λ0 and

Λ′(0) =
dΛ

dt
(0) ∈ C0(Λ0),

there is an ε > 0 so that Λ(t) 6∈ Σ(Λ) for all 0 < t < ε .

Definition 6.5.2. Let (V, ω) be a symplectic vector space. Suppose that
Λ0,Λ1 ⊂ V are two Lagrangian subspaces that meet transversely. A smooth
path {Λt}t∈[0,1] from Λ0 to Λ1 is called preferred if it satisfies the following
properties:

(P-1) Λ′(0) ∈ C0(Λ0).

(P-2) Λt meets Σ(Λ0) transversely at all t ∈ (0, 1]; i.e. Λt is disjoint
from Σk(Λ0) for k > 1 and Λt meets Σ1(Λ0) transversely.

(P-3) The algebraic intersection number of {Λt}t∈(0,1] with Σ(Λ0) is zero.
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Lemma 6.5.1. Let (V, ω) be a symplectic vector space. For any two La-
grangian subspaces Λ0,Λ1 ⊂ V that meet transversely the following state-
ments hold:

(1) (Existence) Λ0 and Λ1 can be connected by a preferred path.

(2) (Homotopy uniqueness) Any two preferred paths are homotopic rel-
ative to the their endpoints, through paths satisfying Property (P-1).

Proof. A pre-preferred path {Λt} is a smooth path from Λ0 to Λ1 satis-
fying Properties (P-1) and (P-2).

Given Λ0 and Λ1 , we can find a pre-preferred path {Λt} since the La-
grangian Grassmannian is connected, C0(Λ0) is connected, and Λ0 is in the
closure of C0(Λ0). Since π1(LGr(V, ω)) = H1(LGr(V, ω)) ∼= Z , and [Σ]
generates H1(LGr(V, ω);Z) (Proposition 4.5.11), it follows that there is a
closed loop γ in LGr(V, ω) for which #(γ ∩ Σ(Λ0)) = 1. Thus, by mod-
ifying {Λt} if necessary by adding as many copies of γ as needed, we can
arrange for Property (P-3) to hold, as well. This establishes existence.

To see homotopy uniqueness, we argue as follows. Fix two preferred paths

Λ, Λ̃ : [0, 1] → LGr(V, ω) from Λ0 to Λ1 . Since the space C0(Λ0) is con-

tractible, we can find an ε > 0 and a homotopy between Λ|[0,ε] and Λ̃|[0,ε]
through paths starting at Λ0 , with non-zero derivative at 0, and whose
restriction to (0, ε] lies in C0(Λ0). Extending this homotopy to [ε, 1] is
equivalent to giving a null homotopy of the closed loop δ obtained by jux-

taposing Λ|[ε,1] , the reverse of Λ̃[ε,1] , and the path in C0(Λ) obtained by

following the homotopy between Λ|[0,ε] and Λ̃|[0,ε] at t = ε . But this null
homotopy can be constructed, since the intersection number of

#Σ(Λ0)∩δ = #Σ(Λ0)∩Λ|[ε,1]−#Σ(Λ0)∩Λ̃|[ε,1] = #Σ(Λ0)∩Λ−#Σ(Λ0)∩Λ̃ = 0,

and π1(LGr(V, ω)) = H1(LGr(V, ω)) ∼= Z , and [Σ] generates H1(LGr(V, ω);Z).
See Figure 6.2.

Remark 6.5.2. The intersection number of a path of Lagrangian subspaces
with Σ1 has the following interpretation. Under the coordinate maps φΛ,P

from the proof of Lemma 4.5.10, the path of Lagrangians corresponds to a
path {At}t∈[0,1] of symmetric matrices, and Σ corresponds to those symmet-
ric matrices with non-trivial kernel. If {At}t∈[0,1] is a generic path of sym-
metric matrices, then there are n distinct eigenvalues λ1(t) < · · · < λn(t),
all of which are non-zero at t = 0, 1. The intersection number of At with
Σ1 counts the number of negative eigenvalues of A1 minus the number of
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Λt

δ

Λ0

Λ1

Λ̃t

Figure 6.2. Homotoping preferred paths of Lagrangians.

negative eigenvalues of A0 . This quantity is called the spectral flow of
{At}t∈[0,1] ; see [117].

We can now give our second definition of the Maslov index, given a symplec-
tic manifold M and a pair of Lagrangians L0 and L1 meeting transversely.
Choose first for each x ∈ L0 ∩ L1 a preferred path (in the sense of Defini-
tion 6.5.2) {Λx(t)}t∈[0,1] from TxL0 to TxL1 in LGr(TxM).

Pre-compose u : D → M with the quotient map [0, 1] × [0, 1] → D which
sends [0, 1] × {0} to −i and [0, 1] × {1} to i , to obtain a continuous map
u : [0, 1]×[0, 1]→M . Thus, u∗(TM) is a bundle of symplectic vector spaces
over [0, 1]× [0, 1], equipped with identifications

u∗(TM)|[0,1]×{0} ∼= [0, 1]× TxM
u∗(TM)|[0,1]×{1} ∼= [0, 1]× TyM.

Consider the Lagrangian subbundle L of u∗(TM) over the boundary of
[0, 1]× [0, 1], specified by

L(s,0) = Tu(s,0)L0 ⊂ Tu(s,0)TM

L(s,1) = Tu(s,1)L1 ⊂ Tu(s,1)TM

L(0,t) = Λx(t) ⊂ TxM
L(1,t) = Λy(t) ⊂ TyM.

Using a symplectic trivialization of the bundle u∗(TM), we can view this as
a loop `u of Lagrangian subsapces in a fixed symplectic vector space. The
Maslov index of u is obtained by applying the universal Maslov class to this
loop.

Proposition 6.5.3. The Maslov index of u, as defined in Definition 6.5.1,
coincides with evaluation of the universal Maslov class µn on the closed loop
`u .
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Proof. Use parallel transport to identify the symplectic vector spaces
u∗(TM)(s,t) with u0,t(TM); and hence, their corresponding Lagrangian
Grassmannians

LGr(u∗(s,t)(TM)) ∼= LGr(u∗(0,t)(TM)).

We compose these identifications with the identifcation LGr(u∗(0,t)(TM) ∼=
U(n)/O(n) under which Tu(0,t)L0 corresponds to the identity coset. Under
these identifications,

• L|(0,t) corresponds to the constant path,

• L|(s,0) corresponds to the path Λx(s),

• L|(s,1) corresponds to the path Λy , and

• L(1,t) corresponds to the path Λt1 .

It follows that the algebraic intersection number of the Malsov cycle (rep-
resented by Σ(Rn)) with three of the four boundary components is zero,
and hence the intersection of the Maslov cycle with the loop of Lagrangians
on the boundary coincides with the intersection number of Λt1 with the
Maslov cycle, which in turn is the definition of the Maslov index from Defi-
nition 6.5.1.

Proposition 6.5.4. Homotopic Whitney disks have the same Maslov index,
so we can think of µ as a function on W (x,y). The Maslov index is additive
under juxtapositions, in the following ways:

(M-1) If φ ∈W (x,y) and ψ ∈W (y, z), then µ(φ ∗ ψ) = µ(φ) + µ(ψ).

(M-2) If φ ∈W (x,y), and ηi ∈ π2(M,Li; x) for i = 0, 1, then

µ(η0 ?0 φ ?1 η1) = 〈µL0 , [η0]〉+ µ(φ) + 〈µL1 , [η1]〉.

(M-3) If S ∈ π2(M ; x), then µ(φ ∨ S) = µ(φ) + 2〈c1(TM), [S]〉.

Proof. A homotopy of Whitney disks moves the curve Λt by homotopies
whose endpoints do not intersect Σ. By elementary algebraic topology, the
intersection number of Λt with Σ is invariant under such isotopies.

Composition of Whitney disks corresponds to concatenation of paths, and
the intersection number is additive under such concatenations, so Prop-
erty (M-1) follows.

For the other two properties, we will use the interpretation of the Maslov
index from Proposition 6.5.3. Specifically, in the proof of that proposition,
the map u is extended to a map u : [0, 1] × [0, 1] → M , with a specified
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Lagrangian subbundle L of u∗(TM). Analogous to the proof of Propo-
sition 4.5.8, the evaluation of the universal Maslov class on the loop of
Lagrangians can be viewed as a relative first Chern class of the bundle
u∗(detC(TM)⊗CdetC(TM)) on [0, 1] × [0, 1] relative to the trivialization
detR(L) ⊗ detR(L) on its boundary (which in turn depends on the restric-
tion of u to its boundary). Property (M-3) follows immediately.

Property (M-2) also follows from this interpretation of the Maslov index,
now combined with the interpretation of the Maslov index for boundary
degenerations from Proposition 4.5.8.

Suppose next that L0 and L1 are oriented Lagrangian submanifolds that
meet transversally. Given an intersection point x ∈ L0∩L1 , let ε(x) ∈ {±1}
be the signed intersection number of L0 and L1 at x ; i.e. the discrepancy
between the orientation of TxM at x specified by the orientation of M ,
and the orientation of TxM ∼= TxL0⊕TxL1 specifieid by the orientations of
L0 and L1 .

Proposition 6.5.5. Suppose that L0 and L1 are oriented Lagrangian sub-
manifolds in M . For any x,y ∈ L0 ∩ L1 and φ ∈W (x,y),

(−1)µ(φ) = ε(x) · ε(y).

Proof. Orient Rn ⊂ Cn . To any oriented Lagrangian subspace Λ that is
transverse to Rn , we can assign a sign e(Λ) ∈ {±1} which is +1 exactly
when the orientation Cn induced by its splitting Cn ∼= Rn⊕Λ coincides with
the orientation it inherits from its symplectic structure. The proposition is
equivalent to the following claim: if {Λt}t∈[0,1] is a generic one-parameter
family of oriented Lagrangian subspaces with Λ0 and Λ1 transverse to Rn ,
then e(Λ0)− e(Λ1) ≡ #(Λt ∩ Σ1) (mod 2). This is obvious from the inter-
pretation of the intersection number as spectral flow.

6.6. Transversality

In finite dimensional Morse theory, for a sufficiently generic choice of met-
rics, the difference in Morse indices λ(x) − λ(y) at the critical points x
and y computes the dimension of the moduli space of gradient flows; cf.
Theorem 5.1.2.

The present section concerns the analogue of this result for pseudo-holomorphic
strips. To make the corresponding transversality work, we must relax slighly
the notion of pseudo-holomorphic strip from the previous section, to include
one-parameter families of almost-complex structures, as follows.
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In the previous sections we chose ω -compatible almost-complex structures,
which allowed simpler arguments in the motivational part of this chapter.
The ω -tame condition is, however, turns out to be more convenient, as (in
contrast wit compatibility) is an open condition. For this reason, from now
on, the almost-complex structures will always be tame with respect to ω .

Definition 6.6.1. Let {Js}s∈[0,1] be a one-parameter family of ω -tame

almost-complex structures on (M2n, ω). A {Js}-pseudo-holomorphic
strip u : R×[0, 1]→M2n is a Whitney strip in the sense of Definition 6.4.1,
which satisfies the partial differential equation

(6.5)
∂u

∂t
+ Js

∂u

∂s
= 0;

i.e. at each (t, s) ∈ R× [0, 1],

∂u

∂t
+ Jsu(t,s)

∂u

∂s
= 0,

where Jsp : TpM → TpM is the endomorphism determined by {Js}. For fixed
φ ∈ W (x,y), let the moduli space M{Js}(φ) denote the set of pseudo-
holomorphic representatives of φ.

Since for any τ ∈ R , the map R×[0, 1]→ R×[0, 1] given by (t, s) 7→ (t+τ, s)
is holomorphic, it follows that if u : R× [0, 1]→M is pseudo-holomorphic,
then so is the map (t, s) 7→ u(t + τ, s). There is a resulting R-action on

M{Js}(φ); the quotient by this action will be denoted by M̂{Js}(φ).

With these notions in place, we have the following analogue of Theorem 5.1.2,
showing the relevance of the Maslov index in the study of pseudo-holomorphic
disks.

Theorem 6.6.2. Let (M2n, ω) be a symplectic manifold, equipped with La-
grangians L0 and L1 . If {Js} is a suitably generic one-parameter family
of ω -tame almost-complex structures, then for any non-constant homotopy

class φ ∈W (x,y) with µ(φ) ≤ 2, the space M̂{Js}(φ) is a smooth manifold
with dimension given by

dimM̂{Js}(φ) = µ(φ)− 1.

In particular, if φ is a non-constant homotopy class with µ(φ) ≤ 0, then

M̂{Js}(φ) is empty. Furthermore, if φ is the homotopy class represented by

a constant Whitney disk, then M̂{Js}(φ) consists of a single point (i.e. it
is the constant flowline).

The moduli spaces M{Js}(φ) are thought of as the solution set of a non-
linear elliptic partial differential equation whose linearization has index com-
puted by the Maslov index, according to a theorem of Floer [21]. The proof
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of smoothness involves an infinite-dimensional application of the Sard-Smale
theorem. See Theorem 35.2.1; compare also [23].

6.7. Compactness

By analogy with Morse theory, we define CF(L0, L1) to be the F-vector
space generated by intersection points between L0 and L1 . To turn CF(L0, L1)
into a chain complex, we attempt to define the boundary operator as

(6.6) ∂x =
∑

y∈L0∩L1

∑
{φ∈W (x,y)

∣∣µ(φ)=1}

#M̂(φ) · y.

(For simplicity, from now on we will omit the indication of the choice of the
one-parameter family {Js} from the notation of the moduli space.) As in
the case of the Morse-Smale complex, to make sense of the above definition,
it remains to address compactness issues, which we do here; and to verify
that it is indeed a chain complex, we will need another ingredient, gluing
(addressed in the next section).

To make sense of Equation (6.6), we must verify that the coefficient of y
is finite. This problem can be divided into two pieces. The first is showing

that for fixed φ ∈ W (x,y), the number of points in M̂(φ) is finite. The
second is that for fixed x and y , there are only finitely many φ ∈ W (x,y)
with non-zero contribution.

While the second problem is handled in various ways, as the setting requires,
the key point to addressing the first problem is a suitable compactification
of the moduli space of pseudo-holomorphic strips analogous to the compact-
ification of gradient flowlines described in Section 5.2.

Definition 6.7.1. The energy of a strip u is the function E(u) defined as

E(u) =

∫
R×[0,1]

1

2

(∥∥∥∥∂u∂t
∥∥∥∥2

+

∥∥∥∥∂u∂s
∥∥∥∥2
)
dtds

=

∫
R×[0,1]

1

2

(
gs

(
∂u

∂t
,
∂u

∂t

)
+ gs

(
∂u

∂s
,
∂u

∂s

))
dtds,

where gs denotes the metric on TM associated to ω and the ω -tame (but not
necessarily compatible) almost-complex structure Js , as in Equation (4.5).

The symplectic form ω provides a cohomology class [ω] ∈ H2(M ;R), and
since L0 and L1 are Lagrangian submanifolds, ω also gives rise to a relative
class in H2(M,L0 ∪ L1;R). Therefore ω can be evaluated on a Whitney
disk from x to y , and indeed the resulting value will depend only on the
homotopy type of the Whitney disk. This value provides an a priori bound
on the energy of a holomorphic strip, similarly to the bound Equation (5.2)
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for a gradient flowline. (As it is customary, we will confuse disks and strips
by implicitely using the conformal identification R× [0, 1] ∼= D \ {±i} .)

Lemma 6.7.2. If u is a {Js}-holomorphic disk with respect to a one-
parameter family of almost-complex structures {Js}s∈[0,1] which are ω -tame,

then the energy of u is identified with the evaluation
∫
D u
∗(ω). Indeed, this

latter quantity can be interpreted as the evaluation of the relative cohomology
class of ω evaluated on the relative homology class determined by the disk.

Proof. Note that for the complex structure on the strip, j ∂∂t = ∂
∂s ; so for

a pseudo-holomorphic map u : R × [0, 1] → M , it follows that Js ∂u∂t = ∂u
∂s .

Thus,∫
R×[0,1]

(∥∥∥∥∂u∂s
∥∥∥∥2

+

∥∥∥∥∂u∂t
∥∥∥∥2
)
dtds =

∫
R×[0,1]

(
ω(
∂u

∂s
, Js

∂u

∂s
) + ω(

∂u

∂t
, Js

∂u

∂t
)

)
dtds

=

∫
R×[0,1]

(
−ω(

∂u

∂s
,
∂u

∂t
) + ω(

∂u

∂t
,
∂u

∂s
)

)
dtds

= 2

∫
R×[0,1]

u∗(ω).

The notion of broken flowlines from Chapter 5 generalizes in the present
setting as follows.

Definition 6.7.3. A broken holomorphic strip from x to y is a se-
quence x = x0, . . . ,xn+1 = y of intersection points between L0 and L1 ,
and a sequence u0, . . . , un of non-constant {Js}-holomorphic strips (mod-
ulo translation). A broken holomorphic strip represents a fixed homotopy
class φ ∈W (x,y) if φ = [u0] ∗ · · · ∗ [un].

Under suitable hypotheses on (M,ω,L0, L1), the spaces of broken pseudo-
holomorphic strips compactify the moduli spaces of pseudo-holomorphic
strips. In case M is non-compact (for example, (M,ω) is exact), we need
some control on holomorphic strips near the ends of M to achieve such
compactness.

Definition 6.7.4. The symplectic manifold (M,ω) is convex at infinity
if there is a pair (J, f) of ω -tame almost-complex structure J and smooth,
proper function f : M → [0,∞) and a compact set K ⊂M such that for all
p ∈M \K the 2-form

ωf = −d(dCf)

(where dCf(v) = df(Jv)) satisfies ωf (v, Jv) ≥ 0 for all v ∈ TpM , cf. [74,
Section 9.2].
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Figure 6.3. A configuration of the curve L0 and L1 in the plane C .

By the maximum modulus principle, if C denotes the supremum of f on
L0 ∪ L1 , any pseudo-holomorphic curve with boundary on L0 and L1 is
contained in the compact set f−1[0, C] .

The compactness result (motivated by Theorem 5.2.3) in the Lagrangian
Floer theoretic setting is due to Gromov [43]; see also [25]. In its sim-
plest form (under the rather restricted topological conditions on π2 ) it is
formulated as follows:

Theorem 6.7.5. Assume that π2(M,Li) = 0, π2(M) = 0 and L0, L1 are
compact Lagrangian submanifolds. Assume furthermore that either M is
compact, or (M,ω) is convex at infinity. Then any sequence of {Js}-
holomorphic strips from x to y (with x 6= y), which has a fixed energy
bound, has a C∞,loc -convergent subsequence to a broken holomorphic strip
from x to y . �

We do not prove this theorem; see [94, 95].

We give an extended example of the broken flowline compactification stated
in Theorem 6.7.5. Consider the complex line C , equipped with the two
curves L0 and L1 pictured in Figure 6.3, with intersection points x, y1, y2, z ∈
L0 ∩ L1 .

The region D1 bounded by the L0 -arc and the L1 -arc containing x and y1

on its boundary is simply-connected; so by the Riemann mapping theorem,
there is, up to translation, a unique holomorphic strip from x to y1 . One way
to pin down this indeterminacy is as follows: there is a unique holomorphic
strip u : R × [0, 1] → C from x to y1 with the property that there is an s
so that u(0, s) = p .

Similarly, there are unique holomorphic strips up to reparametrization from
x to y2 , y1 to z , and y2 to z . Using the notation from Figure 6.3, these
holomorphic strips represent the homotopy classes D2 , D2+D3 and D1+D3 ,
respectively.

There is a two-dimensional moduli space of holomorphic Whitney disks from
x to z (representing the homotopy class φ = D1 +D2 +D3 ), which becomes
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Figure 6.4. The two ends of the one-dimensional moduli space

M̂(x, z) are pictured on the far left and on the far right.

one-dimensional after dividing out by translation. The image of R×(0, 1) is
contained in the heart-shaped simply-connected region shown in the figure.
In fact, the interior must consist of the interior of the heart, with an interval
removed, one of whose ends is at x ; and the other one is a critical value for
the restriction of the map u to (R×{0})∪ (R×{1}). That interval can be
either on the portion of the L1 -arc in the interior of the heart connecting
x to y1 , or on the L0 -arc in the interior of the heart connecting x to y2 .

This gives a parameterization of M̂(φ) by an interval with two ends, corre-
sponding to y1 and y2 . As the parameter r goes to y1 or y2 , the sequence

of holomorphic strips limits to a broken flowline in M̂(D1) × M̂(D2 + D3)

or in M̂(D2)× M̂(D1 +D3).

To make this convergence precise, for φ = D1 +D2 +D3 let ui ∈M(φ) (i =
1, . . . ) be a sequence of holomorphic strips, normalized so that ui(0, si) = p
for a suitable sequence of si ∈ [0, 1], with r(ui)→ y1 . By standard complex
analysis, ui converges to some u . Observe that limt→−∞ u(t, s) = x and
limt→+∞ u(t, s) = y1 .

Note that q is not contained in the image of u . We can retranslate our ui
to obtain a sequence of holomorphic strips vi with vi(t, s) = ui(t+τi, s) (for
some sequence τi ∈ R), so that vi(0, s

′
i) = q . The sequence vi converges

to a different strip v that obviously contains q in its interior; and in fact

v ∈ M̂(D2+D3). In this case, [ui] converges to the broken flowline [u]∗[v] ∈
M̂(D1)× M̂(D2 +D3).

Similarly, if r(ui)→ y2 , then [ui] ∈ M(φ) converges to the broken flowline

[v′] ∗ [u′] ∈ M̂(D2)× M̂(D1 +D3). See Figure 6.4.
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Exercise 6.7.6. Show that there is no holomorphic strip from yi to x in
the above example.

Theorem 6.7.5 is a special case of Gromov’s compactness theorem, which
compactifies the moduli spaces of pseudo-holomorphic curves in an almost-
complex manifold.

To state the hypothesis of this theorem, we generalize the energy of a strip
to the case of a map u : Σ→M , where Σ is a two-manifold equipped with
a Riemannian metric. In that case, there is a 1-form du ∈ Ω1(Σ, u∗(TM)),
whose norm at p ∈ Σ is given by ‖du‖2 = |du(e1)|2 + |du(e2)|2 , where e1, e2

is an orthonormal frame at TpΣ. The energy of u is defined by

(6.7) E(u) =

∫
Σ
‖du‖2dσ,

where dσ is the volume form on (Σ, g). If u satisfies the condition

dup(jv) = Jdup(v)

at each p ∈ Σ and for every v ∈ TpΣ, then u is called a pseudo-holomorphic
curve. By construction, if u is a smooth map with zero energy, then the
map is constant.

We have the following generalization of Lemma 6.7.2:

Lemma 6.7.7. Suppose that u : (Σ, ∂Σ) → (M,L0 ∪ L1) is a pseudo-
holomorphic curve, then

E(u) =

∫
Σ
u∗(ω).

In particular, if u is a pseudo-holomorphic curve that evaluates trivially
against ω , then u is constant.

Proof. This follows exactly as in Lemma 6.7.2.

We will often apply Lemma 6.7.7 in cases where ∂Σ = 0.

Suppose now that M is compact or, more generally, convex at infinity.
Gromov’s compactness theorem states that a sequence of J -holomorphic
maps with uniform energy bound has a subsequence which converges in a
suitable sense to a map from a nodal holomorphic curve; i.e. a Riemann
surface with double-points. From this perspective, a broken flowline can
be thought of as a chain of holomorphic disks, and each point where two
consecutive disks meet is a node.

Even in cases where the domain curve is a disk, one gets convergence to
a more general object than a broken holomorphic strip, provided that one
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Figure 6.5. Another configuration of the curves L0 and L1 in
the plane C .

relaxes the topological assumptions in Theorem 6.7.5. Without the π2 hy-
potheses, the limiting object may contain, in addition to holomorphic strips,
J -holomorphic spheres that bubble off from some interior point in the se-
quence of strips, and J -holomorphic disks with boundary contained entirely
inside L0 or L1 , which we think of as a disk bubbling off the L0 - or the
L1 -side. A precise statement needs to allow for multiple gluings in such
a manner that the source is, in a suitable sense, a stable map of a disk
with nodes. In particular, if spheres do indeed bubble off, then at least
one of those spheres needs to be non-constant; similarly for the disks with
boundary in L0 or L1 ; compare [74, 25, Chapter 5.3].

Rather than stating Gromov’s compactness theorem in generality, we give a
few illustrative one-dimensional examples. (See 35.5 for a similar case.)

To see disks bubbling off from the side, consider the configuration of curves
in C where L0 is an embedded circle, and L1 is a curve that meets L0

transversely in two points x and y , as shown in Figure 6.5. It is easy to see
that in this case π2(M,L0) ∼= Z .

Let φ ∈ W (x, x) be the homotopy class generating π2(M,L0), that is,
the disk encircled by L0 . The moduli space of disks representing φ is
parametrized naturally by a parameter r in the interval (x, y) on L1 . (Here,
the curve u = ur if r is a critical value for u|R×1 .) As r 7→ y , the sequence

of curves ur ∈ M̂(φ) converges to a broken flowline in M̂(D1)×M̂(D2). As
r 7→ x , on the other hand, the sequence of curves ur converges to a config-
uration of curves u0 ∗ v , where u0 corresponds to the constant holomorphic
curve (representing the domain 0 ∈W (φ)), and v is a holomorphic map of
the disk, mapping boundary to all of L0 ; see Figure 6.6.

Next, we investigate how a moduli space can develop a sphere bubble. To
this end, consider the pair of circles L0 and L1 embedded in S2 = CP1 , so
that they intersect in two points, as shown in Figure 6.7. Fix an intersection
point x , choose φ ∈ W (x, x), covering all of S2 with degree one, and

consider the four-dimensional moduli space M(φ). Then the space M̂(φ)
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Figure 6.6. The one-dimensional moduli space shown at the
top has two ends: a broken flowline (on the left) and a bound-
ary disk end (on the right).
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Figure 6.7. A configuration of the curve L0 and L1 in S2 .

is three-dimensional, parametrized by the three critical values of u|R×{0,1}
on L0 ∪ L1 . For concreteness, consider the portion of the moduli space
where two of the critical points r1 and r2 lie on L0 \ {x} , and the third
q lies on L1 , as indicated in Figure 6.8. For a sequence of curves ut , the
parameter q ∈ L1 can approach x in two possible ways. In one direction, as
the cut gets long, the holomorphic curve degenerates into a broken flowline.
In the other direction, as the cut gets short, the moduli space degenerates
to a boundary disk bubble. If all three cuts r1 , r2 and q degenerate to x
at once, the moduli space degenerates to a constant flowline with a sphere
bubbling off. Note that there is a one-dimensional space of these. If first
we let q approaches x (so that the cut length goes to zero), and then we
degenerate r1 and r2 , the configuration consists of a (constant) boundary
disk on the L0 side with a sphere degeneration on it. If we let r1 and r2
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Figure 6.8. A three-dimensional moduli space.

x

x

Figure 6.9. Sphere bubbles in a three-dimensional moduli
space. Note that all the non-spherical components are constant.

degenerate to x first, and then q , we obtain an L1 -boundary disk with a
sphere bubble on it. We can interpolate between these two degenerations
to get a one-parameter family of (constant) flowlines from x to x with a
sphere bubble off; see Figure 6.9.

For our final example, consider the same configuration of circles as in Fig-
ure 6.7, but now consider the homotopy class φ in W (x, y) whose local
multiplicities are 2 at the component D in S2 \ (L0 ∪L1), and whose local
multiplicities are 1 at the other three regions. Then M(φ) is of dimension

five, the space M̂(φ) is a four-dimensional moduli space, and we will con-
sider some portion of it. Given any two distinct points z1, z2 ∈ D , there
is a unique holomorphic representative of φ , as a map whose two branch
points are at z1 and z2 . Denote this map by uz1,z2 . Suppose that z1 and
z2 approach some z ∈ D . If that point z is in the interior of D , the limiting
curve consists of a flowline from x to y that meets a sphere bubble at the
point z . If the point z is on L0 \ {x, y} , the configuration consists of three
components: a flow from x to y , a (constant) boundary bubble, and sphere
that meets the boundary bubble. If z ∈ {x, y} , then there is a configuration
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consisting of a broken flowline one of whose components is constant; and
the constant flowline meets a sphere bubble.

Observe now that the hypotheses from Theorem 6.7.5 ensure that these
pathologies – sphere bubbles and boundary bubbles – do not occur. For
example, π2(M) = 0 implies that spheres bubbling off would have to be null-
homologous, and hence the integral of ω over such spheres (which can be
thought of as evaluating a cohomology class on a homology class) would have
to vanish. But this integral can alternatively be thought of as the energy of
the sphere, as in Equation (6.7). Clearly, a map with zero energy, though,
is constant. Similarly interpreting the integal of ω over D (with boundary
inside L0 or L1 ) as the evaluation of a relative cohomology class ω (recall
that Li were Lagrangian) over a relative homology class, we conclude that
when π2(M,Li) = 0, there can be no pseudo-holomorphic disks bubbling
off the side.

The significance of this compactness for the boundary operator appearing
in Equation (6.6) is the following:

Corollary 6.7.8. Let (M2n, ω) be a symplectic manifold, equipped with
compact Lagrangians L0 and L1 , satisfying π2(M2n, L0) = π2(M2n, L1) =
π2(M2n) = 0. Suppose furthermore that either M is compact, or convex
at infinity. If {Js} is a suitably generic one-parameter family of ω -tame
almost-complex structures, then for all non-constant homotopy classes φ ∈
W (x,y) with µ(φ) = 1, the moduli space M{Js}(φ) is a compact, zero-
dimensional manifold.

Proof. Choose {Js} so that for all non-constant homotopy classes ψ with

µ(ψ) ≤ 0, the corresponding moduli spaces M̂{Js}(ψ) are empty, and for all
homotopy classes with µ(φ) = 1, the corresponding moduli space is smooth.
This can be done by Theorem 6.6.2. By Theorem 6.7.5, any sequence in
M{Js}(φ) converges to a broken flowline, so if that broken flowline has at
least one break, then one of the component homotopy classes has index ≤ 0
(by the additivity of the Maslov index under juxtapositions) and it is non-
constant, contradicting our choice of {Js} .

Having established (at least under the topological constraints of Theorem 6.7.5
and Corollary 6.7.8) that the counts in the Floer differential for each homo-
topy class φ are finite, we must show that only finitely many homotopy
classes contribute. We start with the special case where L0 and L1 are
exact Lagrangians in an exact symplectic manifold.

In the exact case, for each constant path x , the action functional (as defined
in Equation (6.2)) is given by f0(x)− f1(x). Thus, for pseudo-holomorphic
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u ∈ W (x,y), the energy of u , which by Lemma 6.7.2 is identified with∫
D u
∗(ω), is computed by∫

D
u∗(ω) = E(u) = −f0(x) + f1(x) + f0(y)− f1(y),

as in Equation (6.3). This gives the desired energy bound independent of

φ ∈W (x,y), and hence gives compactness for
⋃
{φ∈W (x,y)|µ(φ)=1} M̂(φ).

In conclusion, if (M,ω) is an exact symplectic manifold with compact exact
Lagrangian submanifolds L0, L1 and (M,ω) is convex at infinity, then in
the boundary operator defined in Equation (6.6) for every pair x,y there
are finitely many homotopy classes φ ∈ W (x,y) with nonempty moduli
spaces, and if µ(φ) = 1, all these spaces consist of finitely many points.
Therefore the formula of (6.6) makes sense and defines an endomorphism of
CF(L0, L1).

When (M,ω) is not exact, we can deal with the possibly infinitely many
homotopy classes connecting x and y in another way by introducing a new
coefficient ring.

Definition 6.7.9. The Novikov field NZ/2Z over Z/2Z is defined as the
collection of those formal sums xA =

∑
a∈A xaT

a where xa ∈ Z/2Z, T
is a formal variable and the set A ⊂ R is any discrete subset which is
boundary below. Given two such subsets A and B , their Minkowski sum
A + B = {x

∣∣x = a + b for some a ∈ A and b ∈ B} (where elements are
counted with multiplicity in Z/2Z) has the same property, so we can define
xA · xB = xA+B .

Define CF(L0, L1;NZ/2Z) as the vector space over NZ/2Z generated by the
(finitely many) intersection points of L0 and L1 . For a homotopy class
φ ∈ W (x,y) define a(φ) to be the integral of ω on (any representative of)
φ . Equip the module with the endomorphism

(6.8) ∂x =
∑

y∈L0∩L1

∑
{φ∈W (x,y)

∣∣µ(φ)=1}

#M̂{Js}(φ)ta(φ) · y.

Since the quantity a(φ) is equal to the energy of a pseudo-holomorphic rep-
resentative of φ , the compactness result of Theorem 6.7.5 ensures that there
are only finitely many homotopy classes with pseudo-holomorphic represen-
tatives. Moreover, a(φ) can be thought of as the evaluation of the relative
cohomology class [ω] ∈ H2(M,L0 ∪L1;R) on the relative homology class in
H2(M,L0 ∪ L1) associated to φ . If M is compact, then H2(M,L0 ∪ L1) is
finitely generated, and the coefficient of y on the right hand side of Equa-
tion (6.8) is a well-defined element of NZ/2Z . When M is not compact but
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convex at infinity, we can work instead with H2(f−1[0, C], L0 ∪ L1), with
C = supL0∪L1

f .

6.8. Gluing

As before, assume that π2(M) = 0 and π2(M,Li) = 0, and either M is
compact, or (M,ω) is convex at infinity. Having made sense of the Floer
differential, we turn to the verification that ∂2 = 0. The gluing theorem
now implies the following refined version of the compactification theorem
for moduli spaces; compare [5, Chapter 9] and [21].

Theorem 6.8.1. For generic choices of {Js}, and for each φ ∈ W (x,y)
with µ(φ) = 2, M{Js}(φ) has a compactification to a one-manifold with
boundary, whose boundary is identified with

(6.9)
⋃

{
φ1,φ2|

φ1 ∗ φ2 = φ
µ(φ1) = µ(φ2) = 1

}M̂{Js}(φ1)× M̂{Js}(φ2).

Remark 6.8.2. From Theorem 6.7.5 it follows that the broken flowlines
compactify the moduli space. We must further show two things. First, that

each pair (u1, u2) ∈ M̂{Js}(φ1)×M̂{Js}(φ2) arises as the limit of a sequence

of flowlines from M̂{Js}(φ). In this step, as it was explained in the Morse-
Smale case in Remark 5.2.6, we rely on a gluing result: first for the given
pair (u1, u2) and a parameter ρ we construct a Whitney disk representing
φ = φ1 ∗ φ2 by considering u1 on (−∞, ρ) × [0, 1] ⊂ R × [0, 1] and u2 on
(−ρ,∞)× [0, 1] ⊂ R× [0, 1] and interpolating between the two maps near the
intermediate intersection point. In the second step this approximate flowline

from x to y is modified to an actual flowline uρ ∈ M̂{Js}(φ); it can be
shown that as ρ → ∞ the sequence {uρ} has a subsequence converging to
the given broken flowline (u1, u2). Finally, we must show that any point in
the moduli space which is sufficiently close to a broken flowline is actually
contained in this gluing neighborhood.

Using the above theorem, we can now show that ∂2 = 0. By the definition
of the boundary map, the mod 2 number of points in the space given in
Equation (6.9) gives the coefficient of y in ∂2x .

In the exact case, our assumptions on the topology of (M,L0, L1), and the
above gluing result implies that the points of the space described in Equa-

tion (6.9) corresponds to the ends of the 1-dimensional manifold M̂{Js}(φ).
Since a compact 1-manifold has an even number of boundary points, it fol-
lows that the coefficient of y in ∂2x is zero mod 2. Applying the same rea-
soning for all further pairs of intersection points, we conclude that ∂2 = 0,
as desired.
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The same argument applies for CF(L0, L1;NZ/2Z). In this adaptation, to

see that the terms in ∂2 cancel, it is important to note that a(φ ∗ ψ) =
a(φ) + a(ψ).

Thus, (under the by now usual topological constraints) the pair (CF(L0, L1), ∂)
is a chain complex, and we define HF (L0, L1) as the homology of this chain
complex. Note that as it is defined, HF (L0, L1) depends on the symplec-
tic manifold (M,ω), the two Lagrangians L0, L1 and the chosen ω -tame
1-parameter family of almost-complex structures {Js} . We show that it is
independent of the choice {Js} in the following section, and it is invariant
under Hamiltonian isotopy of the Lagrangians.

Remark 6.8.3. Notice that the chain complex CF(L0, L1) depends only on
the path {Js} of almost-complex structures; the symplectic form ω plays
only an indirect role in the definition of the boundary map ∂ by specifying
which almost-complex structures are ω -tame.

Recall that the compactness results of this section were stated under rather
restrictive conditions. Indeed, these conditions will not be satisfied in the
applications of the Lagrangian Floer homology package we will encounter
later. In the specific context of Heegaard Floer homology the arising com-
plications related to compactness issues will be handled by other means, as
it will be detailed in Chapter 9.

6.9. The invariance proof

Consider for definiteness the case of HF (L0, L1;NZ/2Z):

Theorem 6.9.1. The homology HF (L0, L1;NZ/2Z) is an invariant of the
Lagrangian subspaces of (M,ω).

We must show that it is independent of the choice of the path of almost-
complex structures {Js} used in its definition. This proof is analogous to the
proof sketched in Section 5.3. Specifically, suppose that {Js0} and {Js1} are
two one-parameter families of almost-complex structures that are suitably
generic for the complexes CF{Js0}(L0, L1;NZ/2Z) and CF{Js1}(L0, L1;NZ/2Z)

to be well-defined. Connect {Js0} and {Js1} by a one-parameter family
of paths of almost-complex structures, {Jsτ } (τ ∈ [0, 1]). Given x,y ∈
L0 ∩ L1 and φ ∈ W (x,y), we now have a parameterized moduli space,
M{Jsτ}s,τ∈[0,1]

(φ) of Whitney strips u from x to y representing φ and sat-

isfying the conditions
∂u

∂t
+ Jsψ(t)

∂u

∂s
= 0,

where (as in the discussion after Equation (5.5)) ψ : R → [0, 1] is some
fixed smooth, monotone function ψ(t) = 0 for t ≤ 0 and ψ(t) = 1 for
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t ≥ 1. Note the dependence of the almost-complex structure J on the
(t, s) parameter: whereas the J -term considered earlier depended on the
t-parameter only through the image of u(t, s), now we are considering the
almost-complex structure {Jsψ(t)} at u(t, s). The moduli spaces associated

to a one-parameter family {Js}s∈[0,1] considered earlier have an R action;
this symmetry has been broken in the construction of moduli spaces associ-
ated to two-parameter families of almost-complex structures.

Theorem 6.6.2 has the following analogue (compare Theorem 5.3.1, [23]):

Theorem 6.9.1. Let (M2n, ω) be a closed symplectic manifold, equipped
with compact Lagrangians L0 and L1 , and fix two paths of ω -tame almost-
complex structures {Js0}s∈[0,1] and {Js1}s∈[0,1] . Then for all sufficiently
generic two-parameter family of ω -tame almost-complex structures {Jsτ }s,τ∈[0,1]

connecting those two paths, and for all homotopy classes φ ∈ W (x,y) with
µ(φ) ≤ 1, the space M{Jsτ}s,τ∈[0,1]

(φ) is a smooth manifold of dimension

given by

dimM{Jsτ}s,τ∈[0,1]
(φ) = µ(φ).

In particular, if φ is a non-constant homotopy class with µ(φ) < 0, then
M{Jsτ}s,τ∈[0,1]

(φ) is empty. �

These moduli spaces M{Jsτ}s,τ∈[0,1]
(φ) can be assembled to construct a map

Φ = Φ{Jst }s,t∈[0,1]
: CF{Js0}s∈[0,1]

(L0, L1;NZ/2Z)→ CF{Js1}s∈[0,1]
(L0, L1;NZ/2Z),

defined by

(6.10) Φ(x) =
∑

y∈L0∩L1

∑
{φ∈W (x,y)|µ(φ=0}

#M{Jsτ}s,τ∈[0,1]
(φ)T a(φ) · y,

where #M{Jsτ}s,τ∈[0,1]
(φ) denotes the mod 2 count of points in the moduli

space M{Jsτ}s,τ∈[0,1]
(φ). Gromov’s compactness theorem, and gluing, can be

adapted in the present case to prove the following

Proposition 6.9.2. Assume that π2(M,Li) = 0, π2(M) = 0 and L0, L1

are compact Lagrangian submanifolds. Assume furthermore that either M
is compact, or (M,ω) is convex at infinity. Suppose that {Jst }s,t∈[0,1] is a
generic two-parameter family of ω -tame almost-complex structures. Then
for all x,y ∈ L0 ∩ L1 , and all homotopy classes of Whitney disks φ ∈
W (x,y) with µ(φ) = 0, the moduli space M{Jsτ}(φ) is a compact, zero-
dimensional manifold. Moreover, if µ(φ) = 1, the compactified moduli
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spaces are compact one-dimensional manifolds, whose boundaries are iden-
tified with the following:( ⋃{

φ1∗φ2=φ
∣∣ µ(φ1) = 1
µ(φ2) = 0

}M̂{Js0}s∈[0,1]
(φ1)×M{Jsτ}s,τ∈[0,1]

(φ2)
)

∪
( ⋃{

φ1∗φ2=φ
∣∣ µ(φ1) = 0
µ(φ2) = 1

}M{Jsτ}s,τ∈[0,1]
(φ1)× M̂{Js1}s∈[0,1]

(φ2)
)
.(6.11)

The topological hypotheses in the beginning rule out the possibility of Gro-
mov convergence to a more general type of object (with spheres and/or
boundary bubbles).

The above proposition implies that Φ is a chain map. Specifically, the y
component of (∂ ◦ Φ + Φ ◦ ∂)(x) counts points in the space displayed in
Equation (6.11). Proposition 6.9.2 exhibits this space as the boundary of a
compact one-manifold, hence the number of points in this space is even; i.e.

∂ ◦ Φ + Φ ◦ ∂ = 0.

In order to show that Φ{Jsτ}s,τ∈[0,1]
induces an isomorphism on homology, we

show that Φ{Js1−τ}s,τ∈[0,1]
(defined analogously) is its homotopy inverse; i.e.

we construct an operator

H : CF{Js0}s∈[0,1]
(L0, L1)→ CF{Js0}s∈[0,1]

(L0, L1)

satisfying the equation

∂ ◦H +H ◦ ∂ = Id +Φ{Js1−τ}s,τ∈[0,1]
◦ Φ{Jsτ}s,τ∈[0,1]

.

The operator H is defined by counting holomorphic disks using a three-
parameter family of almost-complex structures {Jsr,t} ; compare Equation (5.8).
We start with {Jsτ } as before, and choose {Jsr,t}{s∈[0,1],r∈[0,∞),t∈R} so that
the following properties hold:

• Jsr,t = Js0 if |t| ≥ r

• there is some R > 1 so that for all r ≥ R , and t ≥ 0, Jsr,t = Jsψ(r−t)

• r ≥ R and t ≤ 0, Jsr,t = Jsψ(r+t) .

Given φ ∈ W (x,y), we can consider the moduli space MH(φ) consisting
of pairs r ∈ (0,∞), and Whitney strips u representing φ , satisfying the
equation

∂u

∂t
+ Jsr,t

∂u

∂s
= 0.



6.9. The invariance proof 151

The usual transversality arguments show that MH(φ) is a manifold of di-
mension µ(φ) − 1. In particular, when the dimension is zero, the moduli
space is compact.

When the moduli space is one-dimensional, it can have three kinds of bound-
ary. One kind of boundary occurs when a {Jsr,t}-holomorphic disk breaks
off, for some r ∈ (0,∞). Another kind of boundary occurs when r → 0;
such a boundary point is a constant flowline for the family of almost-complex
structures {Js0}s∈[0,1] . The third kind of boundary occurs as r →∞ , where
the boundary point consists of a {Jst }s,t∈[0,1] -pseudo-holomorphic disk, jux-
taposed with a {Js1−t}s,t∈[0,1] -pseudo-holomorphic one. Counting boundary
points, we obtain the relation

∂ ◦H +H ◦ ∂ = Id +Φ{Js1−t}s,t∈[0,1]
◦ Φ{Jst }s,t∈[0,1]

.

A simple adaptation of the above construction shows that Φ{Jst }s,t∈[0,1]
◦

Φ{Js1−t}s,t∈[0,1]
is also homotopic to the respective identity map. Thus, the

chain homotopy type of CF(L0, L1;NZ/2Z) is independent of the choice of
the path of ω -tame almost-complex structures {Js}s∈[0,1] that goes into its
definition.

6.9.1. Hamiltonian isotopy invariance. To see that the (chain homo-
topy type of the) complex is invariant under Hamiltonian isotopies, we argue
similarly. Suppose that H : M × [0, 1]→ R is a bounded Hamiltonian func-
tion, and {Ψt}t∈[0,1] : M → M is the corresponding one-parameter family
of Hamiltionian diffeomorphisms with Ψ0(x) = x ; i.e. for any other vector
field Y and x ∈M ,

ω(
dΨt

dt
(x), Y ) = YxHt.

We wish to construct a homotopy equivalence

(6.12) Φ{Ψt}t∈[0,1]
: CF{Js}s∈[0,1]

(L0, L1)→ CF{Js}s∈[0,1]
(L0,Ψ1(L1)).

To this end we consider pseudo-holomorphic disks with fixed one-parameter
family of almost-complex structures {Js}s∈[0,1] and with moving boundary

conditions; i.e. maps u : R×[0, 1]→M2n satisfying the boundary conditions
u(t, 0) ∈ L0 , u(t, 1) ∈ Ψt(L1) for all t ∈ R , and

lim
t7→−∞

u(t, s) = x lim
t7→+∞

u(t, s) = y,

for x ∈ L0 ∩ L1 and y ∈ L1 ∩ Ψ1(L1), and the usual Cauchy-Riemann
equations (Equation (6.5)). Continuous maps satisfying the above boundary
conditions can be assembled into homotopy classes, which we now denote
W ′(x,y); and the space of pseudo-holomorphic representatives of a given
homotopy class φ ∈W ′(x,y) is denoted M{Ψt}t∈[0,1]

(φ).
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The by now familiar transversality theorem (analogous to Theorem 6.9.1)
shows that the moduli spaces M{Ψt}t∈[0,1]

(φ) with µ(φ) ≤ 1 are smooth,

with dimension computed by µ(φ).

We define the map promised in Equation (6.12), as follows. Given x ∈
L0 ∩ L1 , let

Φ{Ψt}t∈[0,1]
(x) =

∑
y∈L0∩Ψ1(L1)

∑
{φ∈W ′(x,y)

∣∣µ(φ)=0}

#M{Ψt}t∈[0,1]
(φ) · ta(φ)y.

These maps are called continuation maps. To see that the sums are finite,
we apply a suitable variant of Gromov’s compactness theorem, now with
energy bounds supplied by the following:

Lemma 6.9.3. For each φ ∈ W ′(x,y), there is a constant C(φ) with
the property that all pseudo-holomorphic representatives of φ have E(u) ≤
C(φ).

Proof. We show that if m = supM×[0,1]Ht(x), then for any two pseudo-
holomorphic representatives u0 and u1 of the same moving pseudo-holomorphic
homotopy class φ ∈W ′(x,y) we have |E(u1)− E(u0)| ≤ 2m .

To this end, fix a homotopy {uτ}τ∈[0,1] from u0 to u1 , i.e. a map u : R ×
[0, 1]× [0, 1]×M with the property that for all t ∈ R and τ ∈ [0, 1],

u(t, 0, τ) ∈ L0 and u(t, 1, τ) ∈ Ψt(L1)

and u(t, s, 0) = u0(t, s), u(t, s, 1) = u1(t, s) for i = 0, 1. Then,

0 =

∫
R×[0,1]×[0,1]

du∗(ω) =

∫
∂(R×[0,1]×[0,1])

u∗(ω)

= E(u1)− E(u0) +

∫
R×{0}×[0,1]

u∗(ω) +

∫
R×{1}×[0,1]

u∗(ω).

Since u|R×{0}×[0,1] ∈ L0 , the restriction of ω to this region vanishes. Now,
u(t, 1, τ) ∈ Lψ(t) , so

du

dτ
∈ Tu(t,1,τ)Ψt(L1) and

du

dt
− dΨt

dt
(u(t, 1, τ)) ∈ Tu(t,1,τ)Ψt(L1).

Moreover, dΨt
dt is supported in t ∈ [0, 1], so∫

R×{1}×[0,1]
u∗(ω) =

∫
R×{1}×[0,1]

ω(
∂u

∂t
,
∂u

∂τ
)dt ∧ dτ =

∫
[0,1]×[0,1]

ω(
dΨt

dt
,
∂u

∂τ
)dt ∧ dτ

=

∫
[0,1]

(∫
[0,1]

∂

∂τ
(Ht(u(t, τ)))dτ

)
dt

=

∫
[0,1]

(Ht(u(t, 1))−Ht(u(t, 0)))dt;
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(a) (b)

C1C0 C1 C0

Figure 6.10. Curves in T 2 .

so |E(u1)− E(u0)| ≤ 2m , as claimed.

A suitable adaptation of Gromov’s compactness theorem, now with the
energy bound supplied by Lemma 6.9.3 shows that the map from Equa-
tion (6.10) is well defined. The usual gluing results show that it is a chain
map. The homotopy inverse is supplied by Φ{Ψ−t} ; a homotopy can be
constructed as before, now using moving boundary conditions, to show that
Φ{Ψt} and Φ{Ψ−t} are homotopy inverses, as claimed.

Remark 6.9.4. The following example shows that Floer homology is not in-
variant under general symplectomorphisms. Consider the two-torus T 2 and
two homologically essential circles C0, C1 on it with two intersection points,
see Figure 6.10(b). It is not hard to see that HF (C0, C1) is Z/2Z⊕ Z/2Z.
By applying a symplectomorphism ϕ on C1 coming from a sufficiently large
rotation, we can make C0 and ϕ(C1) disjoint, so that the Floer homology
is 0.

6.10. The Maslov index for polygons

In Chapter 12, we will need a slight extension of Whitney disks to polygons
and their Maslov indices. We sketch these notions here. As usual, fix a
symplectic manifold M .

Definition 6.10.1. Suppose that L = (L1, . . . , Lm) is an ordered m-tuple
of Lagrangian submanifolds of (M,ω). We say that L is a transversal
chain if Li intersects Lj transversally for any i 6= j ∈ {1, . . . ,m}, and
the triple intersections Li ∩ Lj ∩ Lk is empty for any three distinct indices
i, j, k ∈ {1, . . . ,m}.

Consider the disk D ⊂ C with m distinct marked points v1, . . . , vm on its
boundary in this order, and denote the punctured disk D \ {v1, . . . , vm} by

Ḋ . The arc on ∂D between the marked points vi and vi+1 is denoted by
vivi+1 . (Here, and in the following we will regard indices mod m , hence
for example m+ 1 is considered to be equal to 1.) Fix also disjoint closed
neighbourhoods Vi ⊂ D of the marked points vi together with conformal
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isomorphisms Vi \{vi} → (−∞, 0]× [0, 1]. We complete Ḋ by replacing each

Vi \ {vi} with its closure V̂i = [−∞, 0]× [0, 1], resulting in the surface D̂ .

Suppose that ~x = (xi,i+1) with xi,i+1 ∈ Li ∩ Li+1 is a chain of intersection
points for the transversal chain L of Lagrangian submanifolds in (M,ω).
As in Definitions 6.4.1 and 6.4.2, we get the following

Definition 6.10.2. A Whitney m-gon through ~x is a smooth map u : Ḋ→
M which extends to D continuously and satisfies the conditions

lim
z→vi

u(z) = xi,i+1 u(vivi+1) ⊂ Li.

The set of homotopy classes of such maps will be denoted by WP (~x).

The Maslov index, following the construction in Proposition 6.5.3, can be
readily extended to the case of holomorphic polygons, as follows. For each
x ∈ Li ∩ Li+1 , choose a preferred path γx = {Λx(t)}t∈[0,1] in LGr(TxM)
from (TLi)x to (TLi+1)x .

Given a Whitney m-gon u , we can define a closed loop in the bundle of
Lagrangian subspaces of u∗∂(TM) as follows. Consider the the pull-backs
of paths u∗(TL1 ∪ . . . TLm), and the close it up by attaching γxi,i+1 at the
corners. Using a trivialization of u∗(TM) over D , we can view this as a
closed path of the Lagrangian Grassmannian in a fixed symplectic vector
space. Evaluating the universal Maslov cycle on this closed path gives the
Maslov index of u .



Chapter 7

Symmetric products

This chapter is devoted to the discussion of relevant properties of the sym-
metric products of two-dimensional manifolds.

In Section 7.1 we describe symmetric products of two-manifolds, and in Sec-
tion 7.2 the algebraic topology of these symmetric products is discussed.
In Sections 7.3 and 7.4 we identify the cohomology class corresponding to
the diagonal and the first Chern class of the symmetric product of a Rie-
mann surface. In Section 7.5 the second homology classes representable
by spheres will be identified, and finally in Section 7.6 we present the
description of a symplectic structure on the symmetric product of a two-
dimensional manifold. The material presented here draws heavily from the
references [7, 19, 70, 109].

7.1. Symmetric products of a topological space

Let X be a topological space, and fix an integer m > 0. We can form
the m-fold symmetric product of X , a new topological space consisting of
unordered m-tuples of points in X . More precisely, we form the m-fold
Cartesian product

∏m
i=1X = ×m(X) of X , and then divide it out by the

natural action of the symmetric group Sm on m letters, which acts by
permuting factors in the Cartesian product. In this manner, we form a new
topological space Symm(X). By construction, there is a quotient map

(7.1) π : ×m (X) −→ Symm(X).

For example, the second symmetric product of the circle S1 is homeomorphic
to the Möbius strip, where the boundary is modeled on the pairs of points
which coincide. Of course, the Möbius strip is homotopy equivalent to its

155
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central circle which, in the present model, is identified with pairs of antipodal
points in S1 .

Exercise 7.1.1. Show that for any positive integer m, the m-fold symmet-
ric product of the circle S1 is homotopy equivalent to the circle.

If f : X → Y is a continuous map, then there is a naturally induced contin-
uous map Symm(f) : Symm(X)→ Symm(Y ), defined by

Symm(f){x1, . . . , xm} = {f(x1), . . . , f(xm)}.

In particular, if f is a homeomorphism, then Symm(f) is a homeomorphism.

Let ∆ ⊂ Symm(X) be the diagonal in the symmetric product, consisting
of those points where at least two of the coordinates coincide. Thus, the
diagonal consists of orbits in ×m(X) where the symmetric group action is
not free. Away from this set, the symmetric group acts freely, and hence if
X is an n-dimensional manifold, Symm(X) \∆ is an (m · n)-dimensional
manifold.

Consider for simplicity Sym2(Xn) when Xn is an n-dimensional manifold.
In this case, the diagonal ∆ is identified with X itself, and a neighborhood
of the diagonal in Sym2(Xn) is a bundle over X , whose fibers are modeled
on the cone on RPn−1 .

Exercise 7.1.2. Show that the second symmetric product of an n-manifold
is not a manifold if n > 2.

We consider now symmetric products of two-manifolds. The fundamental
theorem of algebra gives an identification of Symm(C) with Cm : given an
unordered m-tuple of complex numbers {x1, . . . , xm} , there is a unique
monic polynomial whose roots are {x1, . . . , xm} , which in turn is identified
with an element of Cm by taking its various coefficients.

Exercise 7.1.3. Prove that Symm(S2) is homeomorphic to CPm .

The discriminant of the monic complex polynomial p(z) = zm + a1z
m−1 +

· · ·+ am with roots {x1, . . . , xm} is defined as the product

D(p) =
∏
i<j

(xi − xj)2.

Since this expression is a symmetric polynomial of the roots, and the co-
efficients of p(z) are elementary symmetric polynomials of the roots, D(p)
is a polynomial of the coefficients ai of p(z). In fact, D(p) is equal to

(−1)
m(m−1)

2 R(p, p′), where R(p, p′) is the resultant of p and its derivative
p′ , and is defined by the following (2m− 1)× (2m− 1) determinant:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 . . . am−1 am 0 . . . . . . 0
0 1 a1 a2 . . . am−1 am 0 . . . 0

.

.

.
.
.
.

0 . . . 0 1 a1 a2 . . . am−1 am
m (m− 1)a1 (m− 2)a2 . . . am−1 0 . . . . . . 0
0 m (m− 1)a1 (m− 2)a2 . . . am−1 0 . . . 0

.

.

.
.
.
.

0 0 . . . 0 m (m− 1)a1 (m− 2)a2 . . . am−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(See for example [139, Chapter 5.8].) It follows from the definition that
D(p) = 0 if and only if p has repeated roots. In the space of monic poly-
nomials we define the discriminant locus as the vanishing set of the above
determinant, corresponding to the set of polynomials with repeated roots.
Under the identification Symm(C) ∼= Cm , the diagonal ∆ ⊂ Symm(C) is
mapped to the discriminant locus.

The fact that Symm(C) is a manifold has the following generalization:

Proposition 7.1.4. If Σ is an orientable two-manifold, then Symm(Σ) ad-
mits a smooth structure. Furthermore, a complex structure j on Σ induces
a complex structure on Symm(Σ), uniquely characterized by the property
that if ×m(Σ) is equipped with its product complex structure induced from
j , then the quotient map π : ×m (Σ)→ Symm(Σ) is holomorphic.

The proof will use a lemma which, in turn, will rely on the following Riemann
Extension Theorem from several complex variables, a simple consequence of
the Cauchy integral formula; see for example [42]. We state the result here
for the reader’s convenience:

Theorem 7.1.5. (Riemann Extension Theorem) Let Ω ⊂ Cm be an open
set. Suppose that f : Ω → C is a bounded holomorphic function, and let
g : Ω \ f−1(0)→ C be a bounded, holomorphic function. Then g extends to
a holomorphic function on all of Ω. �

Lemma 7.1.6. Let D1 and D2 be two bounded open sets in C and φ : D1 →
D2 a biholomorphism (that is, a bijective holomorphic map) between them.
Then the induced map

Symm(φ) : Symm(D1)→ Symm(D2)

is a biholomorphism between subsets of Symm(C) ∼= Cm .

Proof. Denote the quotient map by π : Cm = ×m(C) → Symm(C), and
the identification Symm(C) ∼= Cm coming from the fundamental theorem of
algebra by θ : Symm(C)→ Cm .
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We wish to prove that θ◦Symm(φ)◦θ−1 , defined on the open set θ(Symm(D1)) ⊂
Cm , is a holomorphic map. To this end, consider the diagram of continuous
maps

×m(D1)
×m(φ)−−−−→ ×m(D2)

π

y π

y
Symm(D1)

Symm(φ)−−−−−−→ Symm(D2)

θ

y θ

y
Cm Cm

The diagonal ∆ ⊂ Symm(C) is mapped by θ to the discriminant locus
∆0 ⊂ Cm , which is the set of points a1, . . . , am where the polynomial
p(z) = zm + a1z

m−1 + · · · + am has a repeated root. The inverse func-
tion theorem guarantees that (θ ◦ π)|Cm\π−1(∆) : Cm \ π−1(∆)→ Cm \∆0 is
a holomorphic covering map. Thus, since ×m(φ) is holomorphic, the restric-
tion of θ ◦ Symm(φ) ◦ θ−1 to (Cm \∆0)∩ θ(Symm(D1)) can be written as a
composition of (locally defined) holomorphic maps. Since θ ◦Symm(φ)◦θ−1

is a continuous map, and ∆0 ⊂ Cm is an algebraic variety (the zero set
of the discriminant in a1, . . . , am ), it follows from the Riemann Extension
Theorem that θ ◦ Symm(φ) ◦ θ−1 is holomorphic. Clearly, its (holomorphic)
inverse is supplied by θ ◦ Symm(φ−1) ◦ θ−1 .

Proof. [of Proposition 7.1.4] We start by constructing the desired complex
structure on Symm(Σ).

The complex structure on Σ provides an atlas {φi : Ui → Σ}i , where Ui ⊂ C
are open subsets, whose transition maps

φ−1
j ◦ φi : φ

−1
i (φj(Uj))→ Uj

are holomorphic. Clearly, Symm(Σ) is covered by charts indexed by parti-
tions (d1, . . . , dk) of m , and k -tuples of charts {φni : Uni → Σ}ki=1 whose im-

ages are disjoint. The parametrization of the corresponding chart Symd1(Un1)×
· · ·×Symdk(Unk) is given by Symd1(φn1)×· · ·×Symdk(φnk). The fact that
the transition maps for this system of charts are holomorphic is a direct
consequence of Lemma 7.1.6.

To see that the complex structure is uniquely characterized by the property
that π is holomorphic, suppose that Symm(Σ) is equipped with two different
complex structures J1 and J2 for which the quotient map π : ×m (Σ) →
Symm(Σ) is holomorphic. Then, the identity map, thought of as a map
from Symm(Σ) equipped with the complex structure J1 to the same space
equipped with the complex structure J2 is continuous and holomorphic away
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from ∆. Using the Riemann Extension Theorem, the identity extends as a
holomorphic function across ∆. It follows that J1 = J2 .

Remark 7.1.7. The proof of Lemma 7.1.6 shows that the symmetric product
of a holomorphic map between Riemann surfaces is a holomorphic map. By
contrast, the symmetric product of a diffeomorphism need not be smooth. For
example, consider Sym2(C), let φ : C→ C be the map φ(x+ iy) = x+ 2iy ,
and consider the smooth path γ : R → Sym2(C) given by t 7→ {

√
t,−
√
t}.

Clearly, θ ◦ γ is the smooth path in C2 given by t 7→ (0,−t). By contrast,
θ ◦ Sym2(φ) ◦ γ is the path in C2 that sends t ≥ 0 to (0,−t) and t ≤ 0 to
(0,−4t).

Following [19], we enhance Proposition 7.1.4 to cases where the complex
structure on Σ varies. The key point is the Ahlfors-Bers generalization of
the Riemann mapping theorem [1], which we state without proof. Recall
that a metric g on an oriented two-manifold induces an almost-complex
structure jg (defined by rotation of tangent vectors by 90◦ counterclock-
wise); indeed, any almost-complex structure on a two-manifold arises in this
way. Moreover, this almost-complex structure can be integrated to give a
complex structure on Σ; see Remark 4.3.5.

Theorem 7.1.8. (Ahlfors-Bers) Suppose that {gt}t∈[0,1] is a smooth family
of smooth metrics on the disk D , and jgt denotes the almost-complex struc-
ture on D corresponding to gt . Let ψgt : (D, j) → (D, jgt) denote unique
conformal identification sending 0 to 0, where j is the standard complex
structure on D induced from C. Then, the map (t, z) 7→ (t, ψgt(z)) is
smooth. Moreover, if {gt}t∈D is a holomorphically varying family of met-
rics, then the map (t, z) 7→ (t, ψgt(z)) is holomorphic. �

Proposition 7.1.9. For different choices of complex structures, the complex
manifolds Symm(Σ) are diffeomorphic.

Proof. Note first that any two complex structures j0 and j1 over Σ
can be thought of as associated to two smooth metrics g0 and g1 over the
same smooth manifold Σ. Any two metrics, in turn, can be connected by a
smooth, one parameter family of metrics {gt}t∈[0,1] over Σ. We will now give
[0, 1]× Symm(Σ) the structure of a smooth manifold so that the projection
map p : [0, 1] × Symm(Σ) → [0, 1] is a smooth submersion, and p−1(t) is
identified with Symm(Σ), equipped with the smooth structure it inherits
from the metric gt through the almost-complex structure induced by gt .

To this end, let Ui ⊂ Σ be a simply-connected coordinate chart on Σ.
Consider the map

ψi : [0, 1]×D → [0, 1]× Σ
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defined by ψi(t, z) = (t, ψt(z)), where ψt is the Ahfors-Bers unformization
of Ui with the metric gt|Ui . These specify coordinate charts on [0, 1] ×
Symm(Σ) mapping (t,w1, . . . ,wk) ∈ ([0, 1], Symd1(D) × · · · × Symdk(D))
to the point (t,Symd1(ψtn1

)(w1) × · · · × Symdk(ψtnk)(wk)). The transition
maps are smooth in t by Theorem 7.1.8, and they are smooth in the other
variables by Lemma 7.1.6.

We have argued that the transition functions are smooth in the parameter
t and the parameters in the symmetric product separately. In fact, the
transition functions are smooth in all the variables at once. This is true
because of the following extension of Lemma 7.1.6: if D1 and D2 are two
bounded open subsets in C , and Φ: [0, 1]×D1 → D2 is smooth map whose
restriction Φt = Φ|{t}×D1

: D1 → D2 is a biholomorphism, then the map

Symm(Φ): [0, 1]× Symm(D1)→ [0, 1]× Symm(D2),

whose restriction to {t}×Symm(D1) coincides with the map Symm(Φt) from
Lemma 7.1.6 is smooth. This in turn follows from a parametrized version
ot Theorem 7.1.5: if Ω ⊂ Cm is an open set, f : [0, 1]×Ω→ C is a bounded
holomorphic function, and G : [0, 1]×(Ω\f−1(0))→ C is a bounded function
whose restriction Gt = G|{t}×(Ω\f−1(0)) is bounded and holomorphic, then

the function G′ : [0, 1]×Ω→ C whose restriction to {t} ×Ω coincides with
the holomorphic extension of Gt from Theorem 7.1.5 is smooth. This is true
because the Riemann extension is defined using the Cauchy integral formula
(see [42]); and the integral depends smoothly on the integrand.

Thus, the above charts on [0, 1]×Symm(Σ) make it into a smooth manifold
with boundary, endowed with a submersion, the projection to [0, 1], whose
fiber over t ∈ [0, 1] is diffeomorphic to with Symm(Σ, jt). Integrating gradi-
ent trajectories gives a diffeomorphism between Symm(Σ) with the smooth
structures it inherits from j0 and j1 respectively.

Remark 7.1.10. There are other approaches to constructing a holomor-
phic structure on Symm(Σ). For example, one can show that Symm(Σ),
equipped with the sheaf of Sm -invariant holomorphic functions on ×m(Σ),
gives Symm(Σ) the structure of an analytic space; see [57]. In a related
vein, if we start with a projective algebraic curve, geometric invariant the-
ory gives Symm(Σ) as a projective algebraic variety; i.e. in addition to a
complex structure, this equips Symm(Σ) also with a compatible symplectic
structure. We outline the construction of another symplectic structure on
Symm(Σ) in Section 7.6.
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7.2. The algebraic topology of Symm(Σ)

We review some facts about the algebraic topology of the m-fold symmetric
product of a two-dimensional manifold, mostly following [70]; see also [7].

As a warm-up, we start with the fundamental group.

Lemma 7.2.1. For all m > 1, there is an isomorphism

π1(Symm(Σ)) ∼= H1(Σ;Z).

Proof. Fix a reference point w ∈ Σ, and let w = {w, . . . , w} ∈ Symm(Σ).
Consider the map (j1)∗ : π1(Σ, w) −→ π1(Symm(Σ),w) induced by the in-
clusion map

j1 : Σ× {w} × . . .× {w} ↪→ Symm(Σ).

To see that (j1)∗ is surjective, observe that a generic representative of a
given homotopy class in π1(Symm(Σ),w) meets the diagonal only at the
basepoint w . Thus, every homotopy class has a representative which can
be written as a product of m curves {γ1, . . . , γm} . Such a curve, in turn,
can easily be seen to be homotopic to the curve

{γ1 ∗ . . . ∗ γm,
m−1︷ ︸︸ ︷

w, . . . , w}
in Symm(Σ), verifying surjectivity.

Next, we claim that π1(Symm(Σ),w) is Abelian, when m ≥ 2. This follows
from the fact that if γ1 and γ2 are two closed curves in Σ based at w , then
the composite of (j1)∗(γ1) and (j1)∗(γ2) is homotopic to the curve induced
from

t 7→ {γ1(t), γ2(t),

m−2︷ ︸︸ ︷
w, . . . , w} ∈ Symm(Σ),

where γ1 and γ2 play symmetric roles.

From the above, it follows that, π1(Symm(Σ); w) ∼= H1(Symm(Σ);Z), and
j1 induces a surjection H1(Σ;Z) → H1(Symm(Σ);Z). It remains to show
that j1 induces an injection on H1(Σ;Z). To this end, we construct a
map θ : H1(Σ;Z) → H1(Symm(Σ);Z) with the property that for any α ∈
H1(Σ;Z) and ξ ∈ H1(Σ;Z), there is an identification of Kronecker pairings

(7.2) 〈θ(ξ), j1(α)〉 = 〈ξ, α〉.
This map θ is constructed as follows. Any ξ ∈ H1(Σ;Z) is the pull-back
of the generator of H1(S1;Z) ∼= Z by some map f : Σ→ S1 . Given such a
map f , we can form another map F : Symm(Σ)→ S1 by

F ({x1, . . . , xm}) =
m∏
i=1

f(xi).
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Define θ(ξ) to be the pullback of the generator of H1(S1;Z) ∼= Z by F .
Equation (7.2) follows readily from this definition; and the stated injectivity
follows.

Next we describe the cohomology ring of Symm(Σ). In order to do so, we
need a few preparatory definitions and constructions.

There is a map

µ : H1(Σ;Z) −→ H1(Symm(Σ);Z)

defined as the composition of maps

H1(Σ;Z) ∼= H1(Σ;Z) ∼= Hom(H1(Σ;Z);Z) ∼= Hom(H1(Symm(Σ);Z),Z)

∼= H1(Symm(Σ);Z),

where the first map is provided by Poincaré duality on Σ, and the third is
provided by Lemma 7.2.1.

A further two-dimensional cohomology class U is defined as follows. A point
w ∈ Σ gives rise to a codimension two submanifold {w} × Symm−1(Σ) of
Symm(Σ), consisting of m-tuples of points {x1, . . . , xm} , where at least one
of the xi = w . The Poincaré dual to the homology class represented by
this closed submanifold is denoted U ∈ H2(Symm(Σ);Z). (One can think
of U as µ({w}), where {w} is the 0-dimensional homology class generating
H0(Σ;Z) and µ : H0(Σ;Z)→ H2(Symm(Σ);Z).)

Let {Ai, Bi}gi=1 be a standard set of oriented, simple closed curves in Σ; i.e.
for all distinct i, j ∈ {1, . . . , g} , Ai∩Aj = ∅ , Ai∩Bj = ∅ , and Bi∩Bj = ∅ ;
while Ai ∩Bi consists of a single intersection point, which is transverse and
positive.

The next theorem (from [70]) states that the cohomology ring of Symm(Σ)
is generated by the image of µ and U . More precisely:

Theorem 7.2.2. (MacDonald) The cohomology ring H∗(Symm(Σ);Z) is
generated by the µ-classes and by U . The relations in this ring are of the
form

(7.3) 0 = U r ·
∏
i∈I

(U − µ(Ai) · µ(Bi))
∏
j∈J

µ(Aj)
∏
k∈K

µ(Bk)

where I, J,K ⊂ {1, . . . , g} are arbitrary pairwise disjoint subsets, and r is
a non-negative integer with r + 2|I|+ |J |+ |K| ≥ m+ 1.

We will prove the above statement first with rational coefficients, and return
to the integral case afterward. Before turning to the proof, we make a few
preliminary remarks.
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Think of Symm(Σ) as the quotient of ×m(Σ) by the action of the permuta-
tion group Sm on m letters, with quotient map π : ×m (Σ) → Symm(Σ).
Clearly, the pull-back map

π∗ : H∗(Symm(Σ))→ H∗(×m(Σ))

maps into the subring H∗(×m(Σ))Sm of cohomology classes that are invari-
ant under the action of Sm . The following general result (for a proof, see for
example [11, Theorem 2.4]) ensures that π∗ induces an isomorphism over
Q :

Theorem 7.2.3. Let X be a simplicial complex, and let G be a finite
group that acts simplicially on X . Then, the pull-back map p : X → X/G
induces an isomorphism between H∗(X/G;Q) and the G-invariant coho-
mology classes in X , H∗(X;Q)G . �

Specializing to the Cartesian product of Σ with itself, we have the following:

Proposition 7.2.4. Let Sm act on ⊗mi=1H
∗(Σ;Q) by permuting the tensor

factors (with a sign when permuting odd generators). The map π∗ induces
an isomorphism over Q:

π∗ : H∗(Symm(Σ);Q)→ H∗(×m(Σ);Q)Sm .

Proof. The symmetric group Sm acts on the space ×m(Σ), inducing an
action of Sm on the cohomology ring H∗(×m(Σ);Q). Under the Künneth
formula H∗(×m(Σ);Q) ∼= ⊗mH∗(Σ;Q) that group action corresponds to
the group action stated in the proposition. Thus, the result follows from
Theorem 7.2.3.

Lemma 7.2.5. The vector space H∗(Symm(Σ);Q) is spanned by the ele-
ments

w(r, I, J,K) = U r ·
∏
i∈I

(U − µ(Ai) · µ(Bi))
∏
j∈J

µ(Aj)
∏
k∈K

µ(Bk)

where I, J,K ⊂ {1, . . . , g} are disjoint subsets, r is a non-negative integer,
and r + 2|I| + |J | + |K| ≤ m; moreover, those elements w(r, I, J,K) with
r + 2|I|+ |J |+ |K| > m are zero.

Proof. H∗(×m(Σ);Q) is generated by cohomology classes of the form
a1 ⊗ · · · ⊗ am , where ai ∈ Hni(Σ;Q), for some sequence n1, . . . , nm . Given
any class ξ in H∗(×m(Σ);Q), we can construct a Sm -invariant class by
adding up all the classes in the Sm -orbit through ξ ; i.e. forming∑

σ∈Sm

σ∗(ξ).
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Indeed, all the Sm -invariant cohomology classes in H∗(×m(Σ);Q) arise in
this way.

Now, w(r, I, J,K) is the Sm -orbit of the class
(7.4)

r︷ ︸︸ ︷
ν ⊗ · · · ⊗ ν ⊗ (⊗i∈IPD(Ai)⊗ PD(Bi))⊗ (⊗j∈JPD(Aj))⊗ (⊗k∈KPD(Bk)) ,

where ν ∈ H2(Σ;Z) is a generator, and PD([α]) ∈ H1(Σ;Z) is the Poincaré
dual to [α] ∈ H1(Σ;Z). Since these latter classes generate H∗(×m(Σ);Q), it
follows from H∗(×m(Σ);Q)Sm ∼= H∗(Symm(Σ);Q) that the classes w(r, I, J,K)
generate H∗(Symm(Σ);Q). The quantity r+ 2|I|+ |J |+ |K| is the number
of tensor factors in ⊗mH∗(Σ;Q) in which the corresponding class specified
by Equation (7.4) has non-zero grading. Thus, when r+2|I|+|J |+|K| > m ,
the class is obviously zero.

Proposition 7.2.6. Theorem 7.2.2 holds with Q coefficients; i.e. H∗(Symm(Σ);Q)
is generated by the µ-classes and by U , and the relations are given by Equa-
tion (7.3).

According to Lemma 7.2.5, the relations from Equation (7.3) hold in H∗(Symm(Σ);Q).

To prove that these are precisely the relations, we proceed as follows: we
construct the (graded) model ring R∗ which is freely generated by the µ-
classes and U , divide it by the ideal I generated by the stated relations,
verify that it satisfies an analogue of Poincaré duality (see Lemma 7.2.7
below), and with the help of that property, prove that the natural map Φ
from R∗ to H∗(Symm(Σ);Q) induces an isomorphism from R/I .

In more detail, let R = R∗ be the exterior algebra over Q on generators
{ai, bi}gi=1 tensored with the polynomial algebra in a formal variable u .
There is a grading gr specified by the following requirements: the grading
is additive under multiplication, the elements with gr = 0 are Q-multiples
of the multiplicative unit 1, R1 is the vector space spanned by {ai, bi}gi=1 ,
and u lies in R2 . For each triple of disjoint subsets I, J,K ⊂ {1, . . . , g} and
each integer r ≥ 0, let

(7.5) w0(r, I, J,K) = ur ·

(∏
i∈I

(u− ai · bi)

)∏
j∈J

aj

(∏
k∈K

bk

)
.

It is clear that the elements w0(r, I, J,K) form a basis for R , thought of as
a vector space over Q , and

(7.6) gr(w0(r, I, J,K)) = 2r + 2|I|+ |J |+ |K|.
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We equip R with a filtration, meaning a sequence of vector space inclusions

R = R0 ⊃ R1 ⊃ · · · ⊃ Rk ⊃ Rk+1 ⊃ . . .

where Ri are vector subspaces with ∩kRk = 0. The filtration is specified
by the function F on the basis

F (w0(r, I, J,K)) = r + 2|I|+ |J |+ |K|;

in particular, F (1) = 0, F (ai) = F (bi) = F (u) = 1, F (u− aibi) = 2. (The
reader should be warned that the equations specifying gr and F are very
similar, but not the same.) An element lies in Rt if it lies in the vector space
span of those elements w0(rk, Ik, Jk,Kk) with F (w0(rk, Ik, Jk,Kk) ≥ t .
We collect some properties of this filtration in the following lemma, to assist
in the proof of Proposition 7.2.6.

Lemma 7.2.7. The graded ring R∗ has the following properties.

(R-1) For any integer t ≥ 0, the vector subspace Rt ⊂ R is an ideal; and
hence the quotient R/Rt inherits the grading gr on R∗ .

(R-2) The portion of R/Rm+1 in grading 2m is one-dimensional, gener-
ated by um .

(R-3) Multiplication in R/Rm+1 induces a bilinear pairing

(Rd/R
m+1
d )⊗ (R2m−d/R

m+1
2m−d)→ R2m/R

m+1
2m

∼= Q,

which is a perfect pairing; i.e. if a ∈ Rd/R
m+1
d is a non-zero

algebra element, then there is a b ∈ R2m−d/R
m+1
2m−d so that a · b =

um .

Proof. It is easy to verify the following relations:

(7.7)
(u− aibi)2 = 2u(u− aibi)− u2, ai · bi = u− (u− aibi),
(u− aibi) · ai = uai (u− aibi) · bi = ubi.

It follows quickly that for any integer t ≥ 0, Rt ⊂ R is an ideal. Since each
basis vectors w0(r, I, J,K) is homogeneous with respect to the grading gr,
it follows that gr descends to R/Rt , completing Property (R-1).

To see Condition (R-2), observe that the conditions that w0(r, I, J,K) lies
in grading 2m and its projection to R/Rm+1 is non-zero (equivalently,
F (w0(r, I, J,K)) ≤ m) can be expressed as

2m = 2r + 2|I|+ |J |+ |K|
m ≥ r + 2|I|+ |J |+ |K|;

so I = J = K = ∅ and r = m .
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We prove Property (R-3) by showing that if (r1, I1, J1,K1) and (r2, I2, J2,K2)
are chosen so that

(2r1 + 2|I1|+ |J1|+ |K1|) + (2r2 + 2|I2|+ |J2|+ |K2|) = 2m,

then
(7.8)

[w0(r1, I1, J1,K1)]·[w0(r2, I2, J2,K2)] =

{
[u]m if I1 = I2, J1 = K2, K1 = J2

0 otherwise.

To see this, first observe that

(7.9) w0(r1, I1, J1,K1) · w0(r2, I1,K1, J1) = ur1+r2 +Rr1+r2+1

Then the first line in Equation (7.8) follows quickly from Equation (7.7).
Conversely, suppose that the expansion of w0(r1, I1, J1,K1)·w0(r2, I2, J2,K2)
in the basis {w0(r, I, J,K)}r,I,J,K contains a non-zero multiple of w0(r3, I3, J3,K3).
Then, from Equation (7.7), it follows easily that:

J3 ⊇ (I1 ∩ J2) ∪ (I2 ∩ J1) ∪ (J2 \K1) ∪ (J1 \K2);

K3 ⊇ (I1 ∩K2) ∪ (I2 ∩K1) ∪ (K2 \ J1) ∪ (K1 \ J2).

In particular, if J3 = K3 = ∅ , then J1 = K2 , J2 = K1 , and I1∪I2 is disjoint
from J1 ∪ J2 = K1 ∪K2 . In that case, we also have (using Equation (7.7))
that

I3 = I1 ∪ I2 \ I1 ∩ I2;

so if I3 = ∅ , then I1 = I2 . The second line of Equation (7.8) follows
immediately.

Equation (7.8) shows that the basis for Rd/R
m+1 resp. R2m−d/R

m+1
2m−d spec-

ified by

{[w0(r1, I, J,K)]}2r1+2|I|+|J |+|K|=d

and

{[w0(r2, I, J,K)]}2r1+2|I|+|J |+|K|=2m−d

are dual to each other under the bilinear form induced by multiplication.
Thus, that form induces a non-degenerate pairing, verifying Property (R-3).

Proof. [of Proposition 7.2.6] Consider the graded ring homomorphism
Φ: R → H∗(Symm(Σ);Q), specified by sending ai → µ(Ai), bi → µ(Bi),
and u to U .
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Lemma 7.2.5 ensures that Φ is surjective; and indeed, since the elements
Φ(ai) = Ai , Φ(bi) = Bi and Φ(u) = U satisfy Equation (7.3), Φ descends
to a (surjective) ring homomorphism

φ : R/I → H∗(Symm(Σ);Q),

where I = Rm+1 .

To verify injectivity, note first that

φ(um) ∈ H2m(Symm(Σ);Q) ∼= Q

is non-zero. This follows from the fact that φ(um) is the m-fold tensor prod-
uct of the two-dimensional generator of H2(Σ;Q), as in Proposition 7.2.4.

More generally, if a is a non-zero element of R/I , consider the element
b ∈ R/I with a · b = [u]m , provided by Property (R-3). Since

φ(a) ^ φ(b) = φ(a · b) = φ(um) 6= 0,

it follows that φ(a) 6= 0, completing the proof that φ is injective.

Before turning to the computation of the integral cohomology of the sym-
metric product, we recall some standard constructions from Riemann surface
theory.

There is an algebro-geometric interpretation of Symm(Σ) as the space of
effective, degree m divisors. Specifically, endow Σ with a complex struc-
ture, and consider the set of holomorphic line bundles E over Σ, equipped
with a non-trivial section φ . This space can be naturally partitioned into
components, indexed by non-negative integers m specifying the topological
type of E , giving its Euler number. The integer m measures the number
of zeros of φ (counted with multiplicity). Declare (E1, φ1) to be equivalent
to (E2, φ2) if there is a holomorphic isomorphism u : E1 −→ E2 of bundles,
with u∗(φ2) = φ1 . The set of equivalance classes of pairs (E , φ) where the
Euler number of E is m coincides with the symmetric product Symm(Σ).

The degree m Jacobian Jm(Σ) over Σ is the space of holomorphic structures
on the topological complex line bundle over Σ with Euler number equal
to m . This space can be identified with a torus with real dimension 2g .
There is a forgetful map, called the Abel-Jacobi map which sends a point in
Symm(Σ), thought of as a pair (E , φ), to the isomorphism class of the line
bundle E .

Example 7.2.8. If Σ2 is a surface of genus 2, the Abel-Jacobi map gives
a map from Sym2(Σ2) to T 4 . In fact, standard tools in Riemann surface
theory [42] show that Sym2(Σ2) is the blow-up of T 4 at a point, as follows.
The Riemann-Roch formula shows that if E is a degree 2 line bundle, then
h0(E) − h1(E) = 1, i.e. h0(E) > 0, so the Abel-Jacobi map is surjective.
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By Serre duality, the only degree 2 line bundle over Σ2 that admits more
than one holomorphic section is the canonical bundle K = T ∗C ; a bundle
with h0(K) = 2. Thus, the fiber over K ∈ T 4 is identified with CP1 ,
the projectivization of the space of holomorphic 1-forms over Σ. It follows

then that Sym2(Σ2) is diffeomorphic to T 4#CP2
. Note also that in this

case π2(Sym2(Σ)) is a countable direct sum of copies of Z; compare with
Proposition 7.5.4.

Lemma 7.2.9. If m > 2g− 2, the Abel-Jacobi map realizes Symm(Σ) as a
fiber bundle over T 2g , whose fiber is identified with CPm−g .

Proof. Serre duality [42] ensures that h1(E) = h0(K⊗E∗), where K is the
canonical bundle (having degree 2g − 2). Thus deg(K ⊗ E∗) = 2g − 2−m .
If m > 2g − 2, then h1(E) = 0, so by Serre duality, h0(E) = m+ 1− g .

The above is a significant step in the proof of the following result from [70]:

Proposition 7.2.10. The cohomology group Hk(Symm(Σ);Z) is torsion
free for all k ∈ N.

Proof. For m > 2g − 2, the statement follows from the Leray-Hirsch
theorem (see for example [47]), and Lemma 7.2.9.

To decrease m , fix w ∈ Σ and consider the inclusion j : Symm−1(Σ) →
Symm(Σ) defined by x 7→ x ∪ {w} . Since Symm(Σ) \ j(Symm−1(Σ)) =
Symm(Σ \ {w}) is an affine variety of (real) dimension 2m , it follows that
Symm(Σ) is obtained from Symm−1(Σ) by attaching cells of dimension ≥ m ;
see [78]. Thus,

jr : Hr(Symm(Σ);Z)→ Hr(Symm−1(Σ);Z)

is an isomorphism for 0 ≤ r < m− 1, and it is injective for r = m− 1, with
cokernel a free abelian group. It follows from descending induction on m
that Hr(Symm(Σ);Z) is a free Abelian group for all 0 ≤ r ≤ m . The claim
of the proposition then follows from Poincaré duality.

Proof. [Proof of Theorem 7.2.2] We claim that the class Um generates
H2m(Symm(Σ);Z). Indeed, the class U is Poincaré dual to the submanifold
{w1}× Symm−1(Σ); choosing distinct points w1, . . . , wm ∈ Σ, the class Um

is Poincaré dual to the intersection(
{w1} × Symm−1(Σ)

)
∩ · · · ∩

(
{wm} × Symm−1(Σ)

)
,

which consists of the single point {w1, . . . , wm} , transversely cut out in
Symm(Σ).
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Since Um generates H2m(Symm(Σ);Z), the proof of Proposition 7.2.6 (us-
ing algebras over Z in place of the algebra R over Q , and noting that
w0(r, I, J,K) in fact gives a Z-basis) shows that the ring H∗(Symm(Σ);Z)/Tors
is generated by the µ-classes and U , subject to the relations from Equa-
tion (7.3). Proposition 7.2.10 now completes the proof.

Remark 7.2.11. A classical theorem of Dold and Thom [47, p. 475] states
that the infinite symmetric product of a topological space X (which can be
thought of as a limit of the finite symmetric products of X ) has the weak
homotopy type of a product of Eilenberg-MacLane spaces; in fact,

Sym∞(X) ∼
∞∏
i=0

K(Hi(X), i).

It follows that Sym∞(Σ) has the weak homotopy type of the product of the
torus of dimension b1(Σ) with CP∞ ; so its cohomology ring is an exte-
rior algebra on 2g 1-dimensional generators and (a polynomial algebra on)
a 2-dimensional generator. This is the ring R appearing in the proof of
Lemma 7.2.5.

7.3. The cohomology class of the diagonal

In this section, we identify the (integral) cohomology class represented by
the diagonal ∆ ⊂ Symm(Σ). A little work is needed to make sense of
this object, since ∆ is not a submanifold. We pause therefore for some
generalities concerning cohomology classes represented by analytic subsets.

Let X be a compact, complex manifold, and let Y ⊂ X be a complex
codimension k analytic subset; i.e. a subset that is locally described as the
zero set of some collection of holomorphic functions. If Y were smooth, we
could apply the Thom isomorphism to its normal bundle to get H2k(X,X \
Y ;Z) ∼= H0(Y ;Z), and take the image of the generator under the inclusion
H2k(X,X \ Y ;Z)→ H2k(X;Z) to construct the Poincaré dual of Y .

Even when Y is not smooth, one can generalize the above construction
to obtain a 2k -dimensional cohomology class dual to Y . We sketch the
construction and refer to [142, Chapter 11] for more details. The key point
is the following:

Theorem 7.3.1. If Y ⊂ X is a complex codimension k subvariety, we can
filter Y by closed analytic subsets ∅ = Yk ⊂ Yk−1 ⊂ · · · ⊂ Y0 = Y , so
that Yj \ Yj+1 is a closed complex submanifold in X \ Yj+1 of (complex)
dimension nj with nj > nj+1 . �
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Use the exact sequence

H2k(X\Yj+1, X\Yj)→ H2k(X\Yj+1)→ H2k(X\Yj)→ H2k+1(X\Yj+1, X\Yj)

and the Thom isomorphism theorem, which gives Hr(X \Yj+1, X \Yj ;Z) =

Hr−2(n−nj)(Yj ;Z) = 0 for r = 2k, 2k+1 to prove by induction on j that the

restriction map induces an isomorphism H2k(X \Yj ;Z) ∼= H2k(X \Yj+1;Z).

In particular, H2k(X;Z)→ H2k(X \ Y1;Z) is an isomorphism.

The Thom class gives an element in H2k(X \Y1, X \Y0;Z), whose image in
H2k(X \Y1;Z) ∼= H2k(X;Z) is what we call the cohomology class associated
to the subvariety Y , and will denote by JY K .

Let Y ⊂ X have complex codimension 1, and let S be an oriented two-
manifold, with fundamental class [S] ∈ H2(S;Z). A smooth map f : S → X
is said to be transverse to Y if f(S) ∩ Y1 = ∅ , and f(S) intersects the
submanifold Y \ Y1 transversely.

Lemma 7.3.2. If f : S → X is transverse to Y , the evaluation 〈JY K, f∗[S]〉
is the algebraic intersection number of f with Y . More generally, if f(S)∩
Y1 = ∅, and f−1(Y ) consists of finitely many points x1, . . . , xm , then around
each xi ∈ S we can consider the map Di → D sending a small neighborhood
Di around xi , mapped via f to X , followed by the projection to a normal
disk to Y \ Y1 at f(xi). The sum of the local degrees of these maps at each
xi is the evaluation 〈JY K, f∗[S]〉.

Proof. This follows from standard intersection theory; see [44].

We will apply the above constructions to the diagonal ∆ ⊂ Symm(Σ), to
obtain a two-dimensional cohomology class [∆] ∈ H2(Symm(Σ);Z). In that
case, the filtration of Theorem 7.3.1 has the following shape:

∆i = {{x1, . . . , xm} ∈ Symm(Σ)
∣∣∣|{x1, . . . , xm}| ≤ m− i− 1},

in particular ∆0\∆1 consists of points in ∆ where exactly two of the points
collide.

Exercise 7.3.3. (a) Show that ∆m−1 = ∅ and ∆m−2 = Σ.

(b) Identify a component of ∆i \∆i+1 with Symm−i−1(Σ).

(c) Determine the number of components of ∆i \∆i+1 .

Remark 7.3.4. Given an embedded, oriented curve γ ⊂ Σ, the cohomology
class µ(γ) can be interpreted also as the Poincaré dual of a stratified space,
as follows. There is an associated subspace γ × Symm−1(Σ), consisting of
m-tuples {x1, . . . , xm} ⊂ Σ so that at least one xi ∈ γ . Although B =
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γ × Symm−1(Σ) is not a manifold, it is a filtered space, with filtration given
by

Bi = {{a, . . . , a, xi+2, . . . , xm} | a ∈ γ}
for i = 0, . . . ,m. In particular, Bm = ∅ and Bm−1 = {{a, . . . , a} | a ∈ γ}.
B0 \ B1 is the image of an immersion of a manifold of dimension 2m− 1,
with trivialized normal bundle. The subset B1 is of codimension 2 in it,
so one can make sense of the algebraic intersection number of this cycle B
with any one-dimensional homology class. Now, µ(γ) is the cocycle whose
value on a one-dimensional cycle c in Symm(Σ) is given by the intersection
number of c with γ × Symm−1(Σ).

Exercise 7.3.5. (a) Identify the double points in B0 \B1 .

(b) Given γ ∈ H1(Σ;Z), its Poincaré dual is represented by some map
u : Σ → S1 , so that the preimage of a regular value in S1 is γ . Find the
associated map Symm(Σ)→ S1 that represents µ(γ).

With the notation of Theorem 7.2.2 we have

Proposition 7.3.6. The two-dimensional cohomology class J∆K ∈ H2(Symm(Σ);Z)
associated to ∆ can be written as

J∆K = 2(m− 1)U + 2

g∑
i=1

(U − µ(Ai)µ(Bi)).

Proof. Consider the embedded surfaces in Symm(Σ) of the form Σ ×
{w1, . . . , wm−1} , Ai × Bi × {w1, . . . , wm−2} , Ai × Bj × {w1, . . . , wm−2}
Ai × Aj × {w1, . . . , wm−2} Bi × Bj × {w1, . . . , wm−2} where i 6= j , and
{w1, . . . , wm−2, wm−1} are distinct fixed points. The verification that these
are indeed embedded surfaces is a straightforward local computation near
the intersection points with the diagonal; the computations of the intersec-
tion numbers will be given in detail below. Before doing so, notice that it is
straightforward to verify that the Poincaré duals to those classes are, respec-
tively, Um−1 , (U−µ(Ai)µ(Bi))U

m−2 , µ(Ai)µ(Bj)U
m−2 , µ(Ai)µ(Aj)U

m−2 ,
and µ(Bi)µ(Bj)U

m−2 ; and in particular these homology classes generate
H2(Symm(Σ);Z). Therefore, to determine J∆K , it will suffice to compute
its intersection number with the above homology generators.

To compute these intersection numbers, note first that ∆ is disjoint from
Ai×Bj , Ai×Aj , Bi×Bj for i 6= j . Next, Σ×{w1, . . . , wm−1} meets ∆ in
m− 1 points, where the point on Σ agrees with one of w1, . . . , wm−1 ; i.e. it
is contained in ∆\∆1 . We claim that the intersection is not transverse, and
its local multiplicity is 2. This can be seen by performing a computation in
a local model around the point w = {w1, w1, w2, . . . , wm−1} . Indeed, since
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all wi (i = 1, . . . ,m− 1) are chosen to be distinct, we can do this local
computation in the case when m = 2; the general case follows from this
special case at once.

Fix a neighborhood D of w1 ∈ Σ with an identification of D with C
(in such a way that w1 maps to 0). In the chart Sym2(D) ⊂ Sym2(Σ)
(when Sym2(D) is identified with Sym2(C) and this latter with the space
of monic, degree 2 polynomials) the surface Σ × {w1} corresponds to the
set {t(t− z) = t2 − zt | z ∈ C} , while ∆ corresponds to those polynomials

t2 + bt+ c with b2− 4c = 0, i.e. to {t2 + bt+ b2

4 | b ∈ C} . These two curves
intersect at (0, 0), and the multiplicity of the intersection is 2, which can be
easily checked by displacing one of the curves with an additive constant.

We claim that Aj×Bj intersects ∆ in 1 point. This is obvious: Aj and Bj
intersect in a single point. We claim that the intersection is non-transverse,
and that the local multiplicity is −2. This is done by computing in a
neighborhood where Aj × Bj is parametrized by (x, y) ∈ R2 . Explicitly,
we have that Aj × Bj corresponds to {x, iy} which in turn corresponds to
t2−(x+iy)t+ixy (and again our subset is a submanifold near its intersection
with the diagonal), a polynomial whose discriminant is given by (x− iy)2 ;
i.e. the intersection is locally modeled on the zero of the map z 7→ z2 ; which
is a single zero with local multiplicity −2.

The form of J∆K ∈ H2(Symm(Σ);Z) now follows from the above evaluations
and Lemma 7.3.2.

7.4. The first Chern class

We compute the first Chern class of Symm(Σ) by relating it to J∆K . Before
doing this, we recall some standard terminology from algebraic geometry.
A holomorphic map φ : X → Y between compact, complex manifolds of
dimension m is called a branched cover if the set R ⊂ X of critical points of
φ is a proper subset of X . In this case, the set of critical values ∆ ⊂ Y of
φ forms an analytic subset called the branch locus of φ , and R is called the
ramification locus of φ . In general both R and ∆ are subvarieties, hence
we can apply the filtration result of Theorem 7.3.1 in studying them.

Example 7.4.1. The map π : ×m (Σ)→ Symm(Σ) is an m!-fold branched
cover, with the diagonal in ×m(Σ) (the critical points of π ) as ramification
locus and ∆ ⊂ Symm(Σ) as branch locus.
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Lemma 7.4.2. Suppose that S is a compact, oriented two-manifold and
f : S → Symm(Σ) is transverse to ∆. Then, there is a diagram

(7.10)

S̃
f̃−−−−→ ×m(Σ)

p

y π

y
S

f−−−−→ Symm(Σ)

where S̃ is a compact, oriented two-manifold equipped with a smooth action

by the symmetric group Sm , f̃ is Sm -equivariant, and p is a branched
covering map with degree m!. Moreover,

〈c1(TSymm(Σ)), [S]〉 =
1

m!
〈c1(T (×m(Σ))), [S̃]〉+

#(∆ ∩ S)

2
.

Proof. Construct S̃ by pull-back. We compute the first Chern class as
follows. Let KX denote the canonical line bundle over X = ×m(Σ) or
Symm(Σ), i.e. the m-fold wedge product of the complex cotangent bundle
Ωn,0 ; in particular c1(KX) = −c1(TX). Pulling back forms induces a map
of complex line bundles, which we denote here Dπ∗ :

Dπ∗ : π∗(KSymm(Σ))→ K×m(Σ),

which is an isomorphism of line bundles away from the diagonal ∆. Thus,
if we think of Dπ∗ as a section of the line bundle

Hom(π∗(KSymm(Σ)),K×m(Σ)) ∼=
(
π∗(KSymm(Σ))

)∗ ⊗K×m(Σ),

then Dπ∗ is non-vanishing away from ∆. Consider a point x ∈ ×m(Σ) on
the top stratum of the ramification locus R . This point has a coordinate
neighborhood U , parametrized by (z1, . . . , zm) so that x corresponds to
z1 = · · · = zm = 0; moreover, π(x) has a coordinate system (w1, . . . , wm)
so that π is modelled on the map

q : (z1, z2, . . . , zm) 7→ (z2
1 , z2, . . . , zm) = (w1, . . . , wm);

i.e. w1 = 0 corresponds to the branch locus ∆ (around π(x)), and z1 = 0
corresponds to the ramification locus R (around x) of π . Clearly,

Dq∗(dw1 ∧ · · · ∧ dwm) = 2z1dz1 ∧ · · · ∧ dzm;

i.e. the section Dπ∗ vanishes with multiplicity 1 along the branch locus ∆.

Pulling back the section Dπ∗ using f̃∗ we obtain a section of the bundle(
π∗(KSymm(Σ))

)∗ ⊗ K×m(Σ) , restricted to S̃ , with transverse zeros along

f̃−1(R). It follows at once that

−〈c1(π∗(KSymm(Σ))), [S̃]〉+ 〈c1(K×m(Σ)), [S̃]〉 = #(R ∩ S̃).
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Since p has degree m! , we have

〈c1(π∗(KSymm(Σ))), [S̃]〉 = −m! · 〈TSymm(Σ), [S]〉

(notice the sign caused by switching from cotangent to tangent bundle), and

#(R ∩ S̃) =
m!

2
#(∆ ∩ S),

since R intersects f̃ with half the multiplicity that ∆ intersects π ◦ f̃ .

Remark 7.4.3. The relationship between the Chern class of a ramified cover
and the ramification divisor described above can be found for example in [46].

Proposition 7.4.4. The first Chern class of TSymm(Σ) is given by

(1 +m− 2g)U +

g∑
i=1

(U − µ(Ai)µ(Bi)) = (1 +m− g)U −
g∑
i=1

µ(Ai)µ(Bi).

Proof. Consider the embedded surfaces generating H2(Symm(Σ);Z) as
in the proof of Proposition 7.3.6. As shown in the proof of that proposi-
tion, some of these surfaces do not meet the diagonal transversely; nonethe-
less, one can construct the m!-sheeted branched covers of these as in Dia-
gram (7.10). For example, when m = 2, the surface S = T 2 embedded as

A1 ×B1 in Symm(Σ) is double covered by the nodal surface S̃ = T 2 ∨ T 2 .
Thus, Lemma 7.4.2 holds for these homology classes.

The first Chern class of ×m(Σ) is 2− 2g times the cohomology class

m∑
i=1

i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗ν ⊗

m−i︷ ︸︸ ︷
1⊗ · · · ⊗ 1,

where ν is a volume form on Σ. Evidently, the lifts of the embedded sur-
faces Ai × Bi × {w1, . . . , wm−2} , Ai × Bj × {w1, . . . , wm−2} , Ai × Aj ×
{w1, . . . , wm−2} , Bi×Bj×{w1, . . . , wm−2} where i 6= j and {w1, . . . , wm−2}
are distinct, are all collections of Lagrangian tori: in particular, c1(T (×m(Σ)))
vanishes on them. The lift of Σ × {w1, . . . , wm−1} is a union of m! copies
of Σ, and the first Chern class of ×m(Σ) evaluates 2− 2g on each of those.

The form of the first Chern class now follows.
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Figure 7.1. Rotate through the axis by 180◦ .

7.5. Spherical homology classes

When understanding Gromov compactifications of spaces of curves in a com-
plex manifold, it is important to understand how the first Chern class of the
manifold evaluates on spherical 2-dimensional homology classes. Having
computed c1(TSymm(Σ)), it remains to understand the homology classes
in Symm(Σ) that are represented by spheres.

To this end, it will be helpful to note that any compact, connected, oriented
two-manifold Σ admits a branched double-cover map f : Σ → S2 ; equiva-
lently, any such two-manifold Σ is equipped with an involution τ : Σ → Σ
acting with finitely many fixed points, so that the orbit space Σ/τ is iden-
tified with S2 . This follows from a symmetric drawing of Σ, as shown in
Figure ??. There is then a naturally induced continuous map F : S2 →
Sym2(Σ), which associates to each z ∈ S2 , the two points in f−1({z}),
thought of as a point in Sym2(Σ). Here, if p is a branch point, we think
of f−1({z}) ⊂ Σ as a single point with multiplicity 2; i.e. it still gives a
well-defined point in Sym2(Σ) (indeed, in its diagonal).

Remark 7.5.1. If Σ is thought of as equipped with a complex structure,
then such a covering does not necessarily exist holomorphically: when it
does, the involution τ is called a hyperelliptic involution , and Σ, as a
complex curve is called a hyperelliptic curve. In explicit terms, consider
the algebraic curve specified by

y2 = (x− a1) · · · (x− a2g+1),

where (x, y) ∈ C2 and a1, . . . , a2g+1 are distinct in C. It is easy to check that
this is a compact two-manifold of genus g punctured in one point, and the
hyperelliptic involution is given by (x, y) 7→ (x,−y). The compact version
is realized by projectivizing the curve.

We formalize the above construction of the two-sphere in Sym2(Σ), as fol-
lows:

Proposition 7.5.2. Let F , S , and Σ be surfaces, f : F → Σ be a map and
φ : F → S be a branched m-fold covering. Then there is an induced map
Φ: S → Symm(Σ) defined as follows: given s ∈ S , if {x1, . . . , xm} = φ−1(s)
(thought of as a multi-set, i.e. a set with possibly repeated entries), then
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Φ(s) = {f(x1), . . . , f(xm)}. Moreover, if F , S , and Σ have complex struc-
tures, and f and φ are holomorphic, then the induced map Φ is holomor-
phic.

Proof. Continuity is straightforward. For the holomorphic version, Φ is
clearly holomorphic away from the branch points; as it is continuous, its
extension across the finitely many branch points is holomorphic, as well.

Remark 7.5.3. In Lemma 7.4.2 we associated a branched m!-fold cover S̃
of the sphere S , associated to the map f from S to Symm(Σ). This space

S̃ is equipped with an action by Sm . In Proposition 7.5.2, we constructed a
sphere in Symm(Σ) from a branced m-fold cover F . These two covers are

related by F = S̃/Sm−1 ; i.e. we have the following commutative diagram:

F = S̃/Sm−1

S̃

Σ

×m(Σ)

S

f̃

p1

p

where p1 : ×m (Σ)→ Σ is projection onto the first factor, and Sm−1 ⊂ Sm

is the subgroup that fixes the first letter.

The sphere in Sym2(Σ) associated to a hyperelliptic involution on Σ is
constructed using Proposition 7.5.2 by choosing F = Σ, f the identity
map, and φ the branched double-cover Σ → S2 . To obtain an induced
sphere in Symm(Σ) for arbitrary m ≥ 2, we fix w1, . . . , wm−2 ∈ Σ and use
the induced inclusion Sym2(Σ)→ Symm(Σ) given by

{x, y} → {x, y, w1, . . . , wm−2}.

To see that the sphere associated to a hyperelliptic involution is homolog-
ically non-trivial, we argue as follows. Fix w ∈ Σ and consider the cor-
responding submanifold {w} × Symm−1(Σ) ⊂ Symm(Σ). Given any map
ϕ : S2 → Σ, let nw(ϕ) denote the algebraic intersection number of ϕ(S2)
with {w} × Symm−1(Σ). In the notation of Theorem 7.2.2, this quantity is
the evaluation of ϕ∗(U) on the fundamental cycle of S2 . In particular, if
nw(ϕ) 6= 0, then ϕ(S2) is homologically non-trivial. For the map Φ asso-
ciated to the involution f above, we note that nw(Φ) = 1. This is most
easily seen if w is not a branch point of f . There is a unique point z ∈ Σ
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so that w ∈ p−1(z). When w is not a branch point, it is straightforward to
check that Φ is transverse to the submanifold {w} × Σ, and that the local
intersection number is +1.

We turn to the more systematic study of homology classes represented by
spheres in Symm(Σ). Recall that for any topological space X and x0 ∈ X ,
there is a natural homomorphism, the Hurewicz homomorphism

hn : πn(X,x0)→ Hn(X;Z),

which carries a sphere f : Sn −→ X to f∗ of the fundamental cycle [Sn] ∈
Hn(Sn;Z) ∼= Z , , cf. [47]. A homology class in the image of this homo-
morphism is called spherical. The spherical classes of H2(Symm(Σ);Z) are
identified in the following:

Proposition 7.5.4. For m > 1, the image of the Hurewicz homomorphism
h2 (i.e., the image of π2(Symm(Σ),x0) in H2(Symm(Σ);Z)) consists of
integral multiples of the Poincaré duals of the cohomology class

(7.11) (U−
g∑
i=1

(U−µ(Ai)µ(Bi)))U
m−2 = ((1−g)U+

g∑
i=1

µ(Ai)µ(Bi))U
m−2.

Moreover, the map nw induces an isomorphism from the image of π2(Symm(Σ),x0)
in H2(Symm(Σ);Z) to Z, taking the above generator to 1 ∈ Z.

Proof. By Theorem 7.2.2, any cohomology class in H2m−2(Symm(Σ);Z) is
a sum of elements of the form Um−1 , (U−µ(Ai)µ(Bi))U

m−2 , µ(Ai)µ(Aj)U
m−2 ,

µ(Bi)µ(Bj)U
m−2 , and µ(Ai)µ(Bj)U

m−2 with i 6= j . Clearly, any spherical
class [S] has the property that

〈µ(Ai)µ(Aj), [S]〉 = 〈µ(Bi)µ(Bj), [S]〉 = 〈µ(Ai)µ(Bj), [S]〉 = 0,

since the pull-backs of µ(Ai) and µ(Bj) to S2 vanish. The above equa-
tions for i 6= j imply that PD[S] is in the span of Um−1 and (U −
µ(Ai)µ(Bi))U

m−2 for i = 1, . . . , g . Observe that if i 6= j ,

µ(Ai)·µ(Bi) · (U − µ(Aj) · µ(Bj))U
m−2

= (U − (U − µ(Ai) · µ(Bi)) · (U − µ(Aj) · µ(Bj))U
m−2 = 0

while

µ(Ai)·µ(Bi) · (U − µ(Ai) · µ(Bi))U
m−2

= µ(Ai) · µ(Bi)U
m−1 = (U − (U − µ(Ai) · µ(Bi)))U

m−1 = Um.

It now follows that the Poincaré dual of a spherical class is a multiple of the
class from Equation (7.11).

It remains to show that there is a map Φ: S2 → Symm(Σ) with nw(Φ) = 1.
When m = 2, such a map Φ was constructed in the discussion preceding
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the proposition. Clearly, the map φ : Symm(Σ) → Symm+1(Σ) induced by
x → {w} ∪ x has the property that nw(φ ◦ Φ) = nw(Φ). Thus, we can
promote the sphere in Sym2(Σ) with nw = 1 to spheres with nw = 1 in
arbitrarily large symmetric products.

For our applications, we will need the following:

Proposition 7.5.5. For any m > 1, and sphere S ⊂ Symm(Σ) we have

(7.12) 〈c1(TSymm(Σ)), [S]〉 = (1 +m− g)nw([S]).

Proof. By Proposition 7.5.4, it suffices to verify the formula for the choice

PD[S] = ((1− g)U +

g∑
i=1

µ(Ai)µ(Bi))U
m−2,

as in Equation (7.11). The result now follows from Proposition 7.4.4, and
the ring structure on H∗(Symm(Σ);Z) given in Theorem 7.2.2.

Remark 7.5.6. The case of primary interest to us will be when m = g ,
reducing Equation (7.12) to 〈c1(TSymm(Σ)), [S]〉 = nw([S]).

Proposition 7.5.7. Given any m > 1, if S is any sphere in Symm(Σ),
then

〈J∆K, [S]〉 = (2m+ 2g − 2) · nw([S]).

Proof. This is a straightforward computation from Propositions 7.3.6
and 7.5.4.

We conclude this section with a consistency check for our computations thus
far. First, we formalize the mechanism that constructed the spheres in the
symmetric product. This gives some insight into how to construct maps into
the symmetric product. Versions of this result will be used later.

Suppose that Σg is a hyperelliptic surface. In this case the hyperelliptic
involution induces a holomorphic map from S2 to Sym2(Σ), whose im-
age S has nw(S) = 1. By an elementary Euler characteristic count (the
Riemann-Hurwitz formula), the branched double-cover has 2g + 2 double
points, so we expect S to intersect ∆ in 2g + 2 points. This is consistent
with Proposition 7.5.7 above.

Exercise 7.5.8. Suppose that Σg is a hyperelliptic complex curve.

(a) Compute the self-intersection number of the holomorphic sphere S in
Sym2(Σg) induced by the hyperelliptic involution.
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(b) Use the adjunction formula

〈c1(TSym2(Σ)), [S]〉 = 2 + [S] · [S]

(which holds since S is holomorphic) to give an alternate verification of
Proposition 7.5.5 when m = 2.

In the above exercise, we chose a particular complex structure on Symm(Σ)
(associated to a hyperelliptic complex structure on Σ). Proposition 7.1.9
shows that the answer is independent of this choice.

7.6. Symplectic structures on the symmetric
product

Let Σ be equipped with a complex structure j , and let ×m(j) denote
the naturally induced Sm -invariant complex structure on the Cartesian
product ×m(Σ). Proposition 7.1.4 supplies a complex structure Symm(j)
on Symm(Σ), with the property that the projection map π : ×m (Σ) →
Symm(Σ) is holomorphic. In the definition of Heegaard Floer homology,
we will need a symplectic structure on Symm(Σ) that is compatible with
Symm(j).

Fix a symplectic form ν on Σ compatible with j . There is a naturally in-
duced product symplectic form ν× over ×m(Σ), defined by ν× =

∑m
i=1 p

∗
i (ν),

where pi : ×m(Σ)→ Σ is projection onto the ith factor. Over Symm(Σ)\∆,
the Sm -invariant form ν× determines a symplectic form, which we write
ν×/Sm . Obviously, ν× is not the pull-back of a symplectic form over
Symm(Σ), since the pull-back of any two-form by π is degenerate at the
critical points of π , i.e. at the preimage of the diagonal π−1(∆) ⊂ ×m(Σ).
On the other hand, by Theorem 7.2.3, since ν× is invariant under the action
of Sm , its underlying cohomology class [ν×] is the pull-back of some coho-
mology class over Symm(Σ). Our aim is to find a symplectic structure on
Symm(Σ) that represents [ν×] and coincides with ν× on the complement of
an open neighbourhood U of the diagonal ∆. (Indeed, the form will depend
on the chosen neighbourhood U .)

The desired symplectic form on Symm(Σ) is provided by the following theo-
rem of Perutz [109], based on complex analytic constructions of Varouchas [140].
Perutz’s theorem states that the cohomology class [ν×] is the pull-back of
a cohomology class which represents a symplectic form over Symm(Σ), and
it gives control of the symplectic form away from ∆.

Theorem 7.6.1. (Perutz [109]) Let (j, ν) be a Kähler structure on the
oriented two-manifold Σ, and let ν× be the induced product Kähler form
over ×m(Σ). Given any open set U containing the diagonal ∆ ⊂ Symm(Σ),
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there is a Kähler form ω on Symm(Σ), equipped with its induced complex
structure Symm(j) from Proposition 7.1.4, so that π∗(ω)− ν× = dη , where
η ∈ Ω1(×m(Σ)) is a form with support inside π−1(U).

We will use this result in the context of Heegaard Floer theory with the
following roles: suppose that H = (Σ,α,β) is a Heegaard diagram, and let

Tα = α1 × . . .× αg and Tβ = β1 × . . .× βg;
be two tori in Symg(Σ). For a complex structure j and area form ν on
Σ there is a branched cover map π : ×g (Σ) → Symg(Σ) and a symplectic
two-form

ν× =

g∑
i=1

p∗i (ν)

on ×g(Σ), where pi : ×g (Σ) → Σ is projection to the ith factor. The
preimage of Tα under π is the union of g! tori⋃

σ∈Sg

ασ(1) × · · · × ασ(g)

(and similarly for the preimage of Tβ ); these preimages π−1(Tα) and π−1(Tβ)
are Lagrangian with respect to ν× in ×g(Σ).

Since Tα and Tβ are disjoint from the diagonal ∆, Theorem 7.6.1 has the
following immediate corollary:

Corollary 7.6.2. (Perutz [109]) For a Heegaard diagram (Σ,α,β, w) and
a complex structure j over Σ there is a Kähler form ω on the complex man-
ifold (Symg(Σ),Symg(j)), for which Tα and Tβ are Lagrangian. Moreover,
for any positive area form ν over Σ, we can choose this Kähler form ω so
that the cohomology classes [π∗(ω)] and [ν×] coincide, when thought of as
elements in the relative cohomology group H2(×g(Σ), π−1(Tα)∪π−1(Tβ);R).

Proof. As the tori Tα and Tβ are disjoint from ∆, we can choose the
open neighbourhood U of ∆ so that it is disjoint from Tα∪Tβ . For a given
Kähler form ν on Σ the symplectic form ω provided by Theorem 7.6.1 will
have the desired properties.

The proof of Theorem 7.6.1 will rest on smoothing techniques from complex
analysis. We will not need these methods in the rest of the present work;
but we include the proof for completeness, nonetheless.

We will need some definitions. Recall first that a smooth function φ : Ω→ R
on an open domain Ω ⊂ R2 is harmonic, if

∆φ =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

= 0.
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A continuous function ψ : Ω → R is called subharmonic if for any x ∈ U
there is r > 0 with Br(x) ⊂ Ω such that for any harmonic function h
with ψ ≤ h on ∂Br(x) we have that ψ ≤ h on Br(x). Alternatively, ψ is
subharmonic if it satisfies

ψ(x) ≤ 1

2π

∫ 2π

0
ψ(x+ reit)dt.

It is called strictly subharmonic if the above inequality is strict.

The above definitions extend to multivariable functions as follows:

Definition 7.6.3. Suppose that Ω ⊂ Cn is an open domain. A smooth
function φ : Ω → R is pluriharmonic if the restriction φ|Ω∩{a+bz|z∈C}
(a, b ∈ Cn ) to any complex line is harmonic. Similarly, a continuous func-
tion ψ : Ω → R is plurisubharmonic resp. strictly plurisubharmonic
if the restrictions ψ|Ω∩{a+bz|z∈C} (a, b ∈ Cn ) are subharmonic resp. strictly
plurisubharmonic.

Notice that harmonic and pluriharmonic functions are smooth by definition,
while subharmonic and plurisubharmonic functions might be only continu-
ous. (Indeed, these notions are also defined for broader classes of functions,
but we will not need that generality in the present context.)

Example 7.6.4. For any real number c > 0, the function on Cn → R
defined by x 7→ c‖x‖2 is strictly plurisubharmonic.

Exercise 7.6.5. Show that ψ : Ω → R is ψ is strictly plurisubharmonic
if and only if for every x ∈ Ω, there is a neighborhood U with x ∈ U ⊂
Ω and a real number c > 0 so that the function y 7→ ψ(y) − c‖y‖2 is
plurisubharmonic.

Since for a holomorphic function F : Ω1 → Ω2 and a pluriharmonic (plurisub-
harmonic) function f : Ω2 → R we have that f ◦ F is also pluriharmonic
(plurisubharmonic, resp.), the above notions extend to functions on complex
manifolds.

Suppose that (X,J) is a complex manifold. For a smooth function f : X →
R define the 1-form dCf as df ◦ J . (We are using here a Let gf denote the
symmetric bilinear form defined as

gf (v, w) = −ddCf(v, Jw).

(Note that since X is complex −ddC coincides with the two-form i
2∂∂ which

appeared in Example 4.1.7.) Using this notion, it can be shown that the
smooth function f : X → R is pluriharmonic if ddCf = 0, is plurisubhar-
monic if gf is positive semi-definite and f is strictly plurisubharmonic if gf
is positive definite; in this latter case −ddCf is a symplectic (in fact, Kähler)
form and gf is a compatible Riemannian (and indeed Kähler) metric.
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Remark 7.6.1. Our definition of dC follows conventions from symplectic
geometry; see for example [13]. The definition of dC from [42], which we
denote dCGH , is related to the above definition of dC by dCGH = − 1

4πd
C .

Definition 7.6.6. For a complex manifold (X, J) the set {(Ui, ϕi)}i∈I is
a Kähler cocycle if {Ui}i∈I is an open cover of X , and ϕi : Ui → R are
continuous functions such that

• ϕi is strictly plurisubharmonic on Ui for all i ∈ I , and

• the difference ϕi − ϕj is pluriharmonic on Ui ∩Uj for all i, j ∈ I .

The Kähler cocyle is called smooth if all ϕi are smooth functions. In this
case the second property ensures that the cocycle −ddCϕi patches together
to a global 2-form on X , which (by the first property) is a J -compatible
symplectic, and therefore a Kähler form.

Conversely, if ω is a Kähler form on the complex manifold (X, J), then by
taking an open cover {Ui} of X with all Ui biholomorphic to a ball, the
solutions of the equations ω|Ui = −ddCϕi provide a smooth Kähler cocycle.
Indeed, ω is a closed form (since it is symplectic) and dCω = 0 also holds
(as dC = J−1 ◦ d ◦ J and ω is J -invariant). According to the ddC -lemma
[57, Lemma 3.A.22], since ω|Ui is also exact (by our topological assumption
on Ui ) we can solve the equation ω|Ui = −ddCϕi for ϕi . Note that in the
above definition ϕi might be only continuous, hence the Kähler cocycle is a
more general notion than a Kähler form. This feature will be important in
our later discussion.

Suppose that π : X → X ′ is a branched covering of complex manifolds of
degree d and ω is a Kähler form on X . Represent ω by a smooth Kähler
cocycle {(Ui, ϕi)}i∈I (so that components of the possibly disconnected Ui
are all biholomorphic to balls) that has the additional property that X ′

admits a locally finite cover {U ′i}i∈I such that π−1(U ′i) ⊂ Ui for all i ∈ I .
The map π can be used to push the smooth Kähler cocycle forward: define
ϕ′i = π∗ϕi at the point x′ ∈ U ′i by

ϕ′i(x
′) =

1

d

∑
x∈π−1(x′)

ϕi(x),

counting the branch points counted with multiplicity. The resulting func-
tions ϕ′i are obviously continuous, but not necessarily smooth.

Example 7.6.7. For an example when the push-forward of a smooth func-
tion is not smooth, consider the double branched cover map π : D→ D given
by the formula z 7→ z2 on the unit disk D ⊂ C. Let f : D → R be given by
f(z) = (Re(z))2 . The map g = π∗f , defined by g(z′) = 1

2

∑
z∈π−1(z′) f(z),

is obviously continuous, but not differentiable at the origin. Indeed, for
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W

Ω

V

U

Figure 7.2. The open sets U, V,W,Ω of Lemma 7.6.8.

z′ = x + iy ∈ D with vanishing imaginary part y and positive real part x
we have that π−1(z′) = {

√
x,−
√
x}, hence g(z′) = x. On the other hand,

if z′ = x + iy has y = 0 and x < 0, then π−1(z′) = {i
√
|x|,−i

√
|x|}, and

so g(z′) = 0, hence g is not differentiable even along the line y = 0.

The key result of Perutz [109] for smoothing continuous Kähler cocycles, and
ultimately verifying Theorem 7.6.1, rests on the complex analytic theorem
of Varouchas [140], which we give below. (For the proof of this theorem see
Subsection 7.6.1.)

Lemma 7.6.8 (Lemme principal, [140]). Suppose that U, V,W,Ω ⊂ Cn are
open sets such that U and V are bounded, and U ⊂ U ⊂ V ⊂ V ⊂W ⊂ Cn
and Ω ⊂W . Suppose furthermore that φ : W → R is a continuous, strictly
plurisubharmonic function which is smooth on Ω. Then there is a function
ψ : W → R satisfying the following properties:

• ψ continuous, strictly plurisubharmonic,

• ψ|W\V = φ|W\V , and

• ψ is smooth on Ω ∪ U .

For a schematic picture of the sets encountered above, see Figure 7.2.

The proof of Theorem 7.6.1 will follow from:

Proposition 7.6.9 (Perutz, [109]; cf. also [140]). Suppose that {(Ui, ϕi)}i∈I
is a continuous Kähler cocycle on the complex manifold X , X1, X2 ⊂ X are
two open subsets with X = X1∪X2 and the functions ϕi|Ui∩X1 are smooth.
Then there is a continuous function χ : X → R with Supp(χ) ⊂ X2 and a
refinement Vj ⊂ Ui(j) (j ∈ J ) such that the family

{(Vj , ϕi(j)|Vj + χ|Vj )}j∈J
is a smooth Kähler cocycle on X .

Proof. Refine the open cover {Ui} so that each element of the cover is
either in X1 or in X2 ; let {Vi,1}i∈N denote the ones in X1 and {Vj,2}j∈N in
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X2 . (We can assume that the original cover is countable; if it is finite, repeat
the last open set infinitely many times.) After taking a further refinement
if necessary, we can arrange that the cover is locally finite; that is, each
point in X is contained in finitely many distinct open sets of the cover. The
Kähler cocycle corresponding to this refinement (obtained by restricting the
functions) is {(Vi,1, ϕi,1)}i∈N ∪ {(Vj,2, ϕj,2)}j∈N .

Find open sets V ′′j,2, V
′
j,2 satisfying V ′′j,2 ⊂ V

′′
j,2 ⊂ V ′j,2 ⊂ V

′
j,2 ⊂ Vj,2 , such

that the union ∪jV ′′j,2 covers X2 \X1 .

Our next aim is to construct a sequence of continuous Kähler cocycles
{(Vi,k, ψni,k)}i∈N,k=1,2 for each n ∈ N such that ψni,k is smooth on Vi,k ∩
(X1

⋃
∪n−1
j=1V

′′
j,2) for every i ∈ N and k = 1, 2. We define ψ1

i,k = ϕi,k
and find the sequence {ψni,k} by defining appropriate continuous functions

χn : X → R supported in V ′n−1,2 ; then the functions for the nth cocycle will
be inductively defined by

(7.13) ψni,k = ψn−1
i,k + χn.

Define χn as follows. If ψn−1
n−1,2 is smooth, let ψnn−1,2 = ψn−1

n−1,2 (and χn = 0).

If ψn−1
n−1,2 is not smooth, apply Lemma 7.6.8 for the following setting:

(U, V,W,Ω) = (V ′′n−1,2, V
′
n−1,2, Vn−1,2, Vn−1,2 ∩

X1 ∪
n−2⋃
j=1

V ′′j,2

)

with the strictly plurisubharmonic function φ = ψn−1
n−1,2 . Lemma 7.6.8 then

provides a new function ψnn−1,2 , and consider the difference χn = ψnn−1,2 −
ψn−1
n−1,2 (extended as zero on the complement of V ′n−1,2 ). Define the maps

for the nth cocycle as ψni,k = ψn−1
i,k + χn . Note that by induction we have

ψni,k = ψ1
i,k +

∑n
j=2 χj ; in particular,

ψni,k − ψnn−1,2 = ψ1
i,k − ψ1

n−1,2.

For x not in V ′n−1,2 we have that ψni,k(x) = ψn−1
i,k (x), which was already

smooth on Vi ∩ (X1 ∪
⋃n−1
j=1 V

′′
j,2), while for x ∈ V ′n−1,2 we have

ψni,k = (ψni,k − ψnn−1,2) + ψnn−1,2 = (ψ1
i,k − ψ1

n−1,2) + ψnn−1,2

where the first summand is pluriharmonic (hence smooth) and the second
one is smooth and strictly plurisubharmonic. It also shows that the function
ψni,k is strictly plurisubharmonic.

Consider now the function χ : X → R defined as

χ(x) =
∑
n∈N

χn(x).
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Since the sum is locally finite (as the cover was chosen to be locally finite),
the definition makes sense.

The functions ζi,k = ψ1
i,k + χ = ϕi,k + χ now define a Kähler cocyle, which

is smooth: indeed, on X \∪jV ′j,2 ⊂ X1 the cocycle ϕi,k was already smooth

and it has not been changed, while on V ′′j,2 ⊂ X1∪
⋃n−1
i=1 V

′′
i,2 the smoothness

follows from the construction.

Proof. [Proof of Theorem 7.6.1] For x ∈ ×m(Σ) consider a neighbour-
hood Ux biholomorphic to the disk D2m and let φx be the solution of the
equation −ddCφx = ν×|Ux . For x′ ∈ Symm(Σ) let us choose the open neigh-
bourhood Vx′ so that π−1(Vx′) ⊂ ∪x∈π−1(x′)Ux . Consider a finite subcover

{Vx′1 , . . . , Vx′k} of the cover {Vx′ | x′ ∈ Symm(Σ)} of Symm(Σ). Next con-

sider a finite subcover {W1, . . . ,WK} of the cover {Wx = Ux ∩ π−1(Vx′i) |
π(x) = x′i} of ×m(Σ). Restricting φx to Wx we have a smooth Kähler
cocycle over ×m(Σ). We will perform a final adjustment on these functions.
Indeed, for y ∈Wx consider the value

ϕx(y) =
1

m!

∑
σ∈Sm

φσ(x)(σ(y)),

where in the sum we count the values with multiplicity. Since the resulting
functions are averages of smooth strictly plurisubharmonic functions (and
the differences are pluriharmonic on the intersections), and by the Sm -
equivariance of ν× all solve the ddC equations, we have that the resulting
{(Wj , ϕj)} is a smooth Kähler cocycle on ×m(Σ) which is, in addition,
Sm -equivariant.

Let φ′i : Vx′i → R be the push-forward of the cocycle {(Wj , ϕj)} , that is,

φ′i(x
′) = 1

m!

∑
x∈π−1(x′) ϕj(x), where the points in π−1(x′) are counted

with their branching multiplicity. Since ϕj is continuous, so is φ′i , but
(although ϕj is C∞ ) the push-forward φ′i might not be differentiable ev-
erywhere. Note that by the Sm -equivariance of the smooth Kähler cocycle
{(Wj , ψj)} , we have that the pull-back of the push-forward {(Vx′i , φ

′
i)} is

equal to {(Wj , ϕj)} .
Nevertheless, {(Vx′i , φ

′
i)} is a continuous Kähler cocycle: away from the

branch locus the functions φ′i are clearly plurisubharmonic (and the differ-
ences are pluriharmonic), and since by [38] these properties extend through
the diagonal, the properties follow for the functions. We also need that the
functions φ′i are strictly plurisubharmonic. For a given point x′ ∈ Vx′i take

a neighbourhood A such that on every component of π−1(Wj) the function
φ′i can be written as the sum of a plurisubharmonic function and c‖y‖2 for
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some fixed positive c . The push-forward of the plurisubharmonic part pro-
vides a plurisubharmonic function on A , while c‖y‖2 pushed forward gives
a similar term, concluding the argument.

Next we replace the continuous Kähler cocycle {(Vx′i , φ
′
i)} with a smooth

one, as follows. Fix an open neighborhood U of the diagonal ∆ ⊂ Symm(Σ).
Let U ′ ⊂ U be an open set with the property that its closure U ′ is in U and
apply Proposition 7.6.9 with the choice X1 = Symm(Σ) − U ′ and X2 = U
for the contiuous Kähler cocycle {(Vx′i , φ

′
i)} . Proposition 7.6.9 provides a

continuous function χ : Symm(Σ) → R such that when adding this to the
continuous Kähler cocycle we get a smooth Kähler cocycle with functions
φ′i + χ and corresponding symplectic form ω = −ddC(φ′i + χ).

The definition of ω (and the property that φ′i + χ are strictly plurisub-
harmonic functions) shows that it is a Kähler form. The pull-back π∗(ω)
can be represented by the pull-back of the smooth Kähler cocycle given by
the functions {φ′i + χ} . By our choice, the pull-back of {φ′i} is the smooth
Kähler cocycle defining ν× , hence the pull-back χ̃ of χ is a smooth function
with the property that

π∗(ω)− ν× = −ddCχ̃.

Since χ is supported in the chosen open neighbourhood U of the diagonal,
by taking η = −dCχ̃ the claim of the theorem is verified.

7.6.1. The proof of Varouchas’ lemma. For the sake of completeness,
we include the proof of Lemma 7.6.8 of Varouchas here; so fix U, V,W,Ω ⊂
Cn and φ : W → R as in the statement. The lemma is proved by molli-
fying φ to smooth it out near V , and interpolating between this mollified
version with φ while preserving strict plurisubharmonicity. We start with
finding the convolving functions to smooth out φ near V , and turn to the
interpolation in Equation (7.15).

To find the the right convolution, we make some preliminary choices and
definitions:

• For ρ > 0 fix a non-negative smooth function αρ : Cn → R≥0 sup-
ported in the ball B(0, ρ) of radius ρ and center 0, with

∫
Cn αρ =

1. For example, fix a non-negative smooth function α : Cn → R≥0

with Supp(α) ⊂ B(0, 1) and
∫
Cn α = 1, and define αρ(z) =

ρ−1α( zρ) for ρ > 0.

• Choose a smooth function η : W → [−1, 1] such that η = 1 on U
and η = −1 on W \ V .
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• Let ξ : R2 → R be a smooth even function, supported in (−1, 1)×
(− 1, 1) and satisfying∫

R2

ξ(t1, t2)dt1dt2 = 1.

Consider the domain Wρ = {x ∈W | dist(x,Cn\W ) > ρ} . The convolution

(φ ∗ αρ)(x) =

∫
Cn
φ(y)αρ(x− y)dy

is defined on Wρ ; since the convolution of a smooth and a continuous func-
tion is smooth, we get that φ ∗ αρ is smooth on Wρ .

Since φ is strictly plurisubharmonic, there is an open set W ′ ⊂ W and
a positive constant c > 0 such that on W ′ we have φ = φ1 + φ2 , where
φ1 is plurisubharmonic and φ2 is the strictly plurisubharmonic function
φ2(x) = c · ‖x‖2 .

Since φ2 is strictly plurisubharmonic, and strict subharmonicity is an open
condition, we can fix some t > 0 so that φ2 + tη is strictly subharmonic.

Since V is bounded with V ⊂W , for any sufficiently small ρ > 0, we have
that V ⊂ Wρ . For such a choice of ρ , the convolution φ ∗ αρ defines a

function on V . From the expression

(φ ∗ αρ)(x)− φ(x) =

∫
Cn

(φ(y)− φ(x))αρ(x− y)dy

and the fact that φ is continuous (hence uniformly contiuous) on the com-
pact set V , it follows that φ ∗αρ uniformly converges to φ on V as ρ→ 0.
Hence, we can pick ρ > 0 so that

(7.14) |φ ∗ αρ − φ| <
t

2
on V .

Lemma 7.6.10. For sufficiently small t > 0, the function φ ∗ αρ + tη is

strictly plurisubharmonic on a neighbourhood of V .

Proof. Recall that φ ∗ αρ = φ1 ∗ αρ + φ2 ∗ αρ . Since convolution of a
plurisubharmonic function with αρ is also plurisubharmonic, it follows that
φ1∗αρ is plurisubharmonic. Thus the lemma follows if φ2∗αρ+tη is strictly
plurisubharmonic. For any 0 < t < c

sup |ddCη| ,

ddC(φ2 ∗ αρ + tη) = (ddCφ2) ∗ αρ + tddCη = c+ tddCη > 0.
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For δ ≤ t
4 , let Mδ : R2 → R be the function defined by

Mδ(x, y) =

∫
R2

max{x− δt1, y − δt2} · ξ(t1, t2)dt1dt2.

Lemma 7.6.11. If |x− y| ≥ 2δ then Mδ(x, y) = max{x, y}.

Proof. Recall that if ξ(t1, t2) 6= 0, then t1, t2 ∈ (−1, 1). Suppose that
x−y ≥ 2δ . Then, x−t1δ > y−t2δ , hence the maximum of these two terms is
x−t1δ . Since ξ is even by assumption, it follows that

∫
t1ξ(t1, t2)dt1dt2 = 0,

and so Mδ(x, y) = x . A similar argument applies when y − x ≥ 2δ .

Consider the function

(7.15) ψδ(z) = Mδ(φ(z), (φ ∗ αρ + tη)(z)).

Lemma 7.6.12. The function ψδ is strictly plurisubharmonic and it is equal
to φ on a neighborhood of ∂V .

Proof. If f, g are two strictly plurisubharmonic functions, then so are
f − δt1 and g− δt2 and also max(f − δt1, g− δt2). Then the convolution is
also strictly plurisubharmonic.

Since η = −1 on W \ V , near ∂V the function tη is arbitrary close to −t .
Since on V we have φ ∗ αρ − φ < t

2 , it follows that on a sufficiently small
neighbourhood of ∂V we have

φ ∗ αρ + tη < φ− t

2
≤ φ− 2δ.

By Lemma 7.6.11 the claim on ψδ follows.

Define the function ψ by

ψ(x) =

{
ψδ(x) x ∈ V
φ(x) x ∈W \ V.

By the behaviour of ψδ near ∂V , the resulting function ψ : W → R is
continuous on W . With this definition now we can turn to the proof of the
Lemme principal, Lemma 7.6.8.

Proof. [Proof of Lemma 7.6.8] The function ψ defined above clearly equals
φ on W \ V and by Lemma 7.6.12 it is strictly plurisubharmonic. We need
to show that it is smooth on U ∪ Ω. Once again, as on the complement
W \ V the function ψ is equal to φ (and φ was assumed to be smooth on
Ω), we need to concentrate on the smoothness of ψ on (U ∪ Ω) ∩ V .
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Combining the fact that η ≡ 1 on U with Equation (7.14), we have that
φ ∗ αρ + tη > φ+ t

2 ≥ φ+ 2δ . By Lemma 7.6.11, the restriction of ψδ = ψ
to U agrees with the smooth function φ ∗ αρ + tη , establishing smoothness
on U .

Finally, the smoothness of ψ on Ω∩V follows from the fact that φ is smooth
there, φ ∗ αρ + tη is smooth on V , and the function Mδ is smooth on R2 .

(Note that we chose ρ so small that V ⊂ Wρ .) Thus, over Ω ∩ V , the
function ψ is a composition of smooth functions, and therefore is smooth.
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stones. Birkhäuser/Springer, New York, 2011.

[92] A. Newlander and L. Nirenberg. Complex analytic coordinates in almost complex
manifolds. Ann. of Math. (2), 65:391–404, 1957.

[93] Y. Ni. Knot Floer homology detects fibred knots. Invent. Math., 170(3):577–608,
2007.

[94] Yong-Geun Oh. Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks. I. Comm. Pure Appl. Math., 46(7):949–993, 1993.

[95] Yong-Geun Oh. Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks. II. (CPn,RPn) . Comm. Pure Appl. Math., 46(7):995–1012, 1993.

[96] P. Orlik. Seifert manifolds. Lecture Notes in Mathematics, Vol. 291. Springer-Verlag,
Berlin-New York, 1972.

[97] B. Owens. Unknotting information from Heegaard Floer homology. Adv. Math.,
217(5):2353–2376, 2008.
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[102] P. Ozsváth and Z. Szabó. Holomorphic disks and knot invariants. Adv. Math.,
186(1):58–116, 2004.



736 Bibliography
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[104] P. Ozsváth and Z. Szabó. On knot Floer homology and lens space surgeries. Topology,
44(6):1281–1300, 2005.
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