The edge-density for $K_{2, t}$ minors

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Bruce Reed
McGill University, Montreal, QC
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544

December 25 2007; revised April 19, 2011

[^0]
Abstract

Let H be a graph. If G is an n-vertex simple graph that does not contain H as a minor, what is the maximum number of edges that G can have? This is at most linear in n, but the exact expression is known only for very few graphs H. For instance, when H is a complete graph K_{t}, the "natural" conjecture, $(t-2) n-\frac{1}{2}(t-1)(t-2)$, is true only for $t \leq 7$ and wildly false for large t, and this has rather dampened research in the area. Here we study the maximum number of edges when H is the complete bipartite graph $K_{2, t}$. We show that in this case, the analogous "natural" conjecture, $\frac{1}{2}(t+1)(n-1)$, is (for all $t \geq 2$) the truth for infinitely many n.

1 Introduction

Graphs in this paper are assumed to be finite and without loops or parallel edges. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.

Mader [5] proved that for every graph H there is a constant C_{H} such that every graph G not containing H as a minor satisfies $|E(G)| \leq C_{H}|V(G)|$, but determining the best possible constant C_{H} for a given graph H is a question that has been answered for very few graphs H.

A particular case that has been intensively studied is when H is a complete graph K_{t}. One natural way to make a large dense graph with no K_{t} minor is to take a complete graph of size $t-2$, and add $n-t+2$ more vertices each adjacent to all vertices in the complete graph. This produces an n-vertex graph with no K_{t} minor and with $(t-2) n-\frac{1}{2}(t-1)(t-2)$ edges, and Mader [6] showed that for all $t \leq 7$ and $n \geq t-2$, this is the maximum possible number of edges in an n-vertex graph with no K_{t} minor. It would be nice if this were true for all t, but Mader also showed that for $t \geq 8$ this is not the correct expression, and Kostochka [2, 3] and Thomason [12, 13] showed that for large t and n the maximum number of edges is $O\left(t(\log t)^{\frac{1}{2}} n\right)$.

This is disappointing, at least to those with faith in Hadwiger's conjecture. But what about when H is a complete bipartite graph $K_{s, t}$ say? When $s \leq 1$ the problem is very easy, but for $K_{2, t}$ it was open (for $t<10^{29}$), and is the subject of this paper.

Here is a graph with no $K_{2, t}$ minor (for $t \geq 2$): take a graph each component of which is a t-vertex complete graph, and add one more vertex adjacent to all the previous vertices. This graph has $\frac{1}{2}(t+1)(n-1)$ edges, where n is the number of vertices, and exists whenever t divides $n-1$. We shall show that this is extremal. The following is our main theorem, proved in sections 2-6:

1.1 Let $t \geq 2$, and let G be a graph with $n>0$ vertices and with no $K_{2, t}$ minor. Then

$$
|E(G)| \leq \frac{1}{2}(t+1)(n-1)
$$

This answers affirmatively a conjecture of Myers [7], who proved 1.1 for all $t \geq 10^{29}$.
As we saw, this is best possible when $n-1$ is a multiple of t, but for other values of n it may not be best possible, and as far as we know, it could be a long way from best possible. For instance, if $n=\frac{3}{2} t$, 1.1 gives an upper bound of about $\frac{1}{2} t n$, but the best lower bound we know is about $\frac{5}{12} t n$.

What if we exclude $K_{1, t}$ instead of $K_{2, t}$? It is easy to see that every n-vertex graph with more than $\frac{1}{2}(t-1) n$ edges contains $K_{1, t}$ as a minor (indeed, as a subgraph), and if t divides n then there is an n-vertex graph with exactly $\frac{1}{2}(t-1) n$ edges with no $K_{1, t}$ minor (the disjoint union of n / t copies of K_{t}). Thus this question is trivial. Curiously, however, the answer is quite different if we restrict ourselves to connected graphs. The following is shown in [1]:
1.2 Let $t \geq 3$ and $n \geq t+2$ be integers. If G is an n-vertex connected graph with no $K_{1, t}$ minor, then

$$
|E(G)| \leq n+\frac{1}{2} t(t-3)
$$

and for all n, t this is best possible.
We should therefore anticipate some analogous change in the conclusion of 1.1 if we add an appropriate connectivity hypothesis; and versions of 1.1 for higher connectivity are presented in section 8. Assuming G is connected makes no difference (because the extremal example given above is connected anyway); but it turns out that assuming G is 2 -connected saves roughly a factor of two, and assuming it is 3 -connected makes the bound qualitatively different. To prove the 2-connected result, we need to prove a version of 1.1 when we exclude $K_{2, t}$ as a "rooted" minor, and this is the content of section 7 .

More generally, what is the maximum number of edges in graphs with no $K_{s, t}$ minor when $s \geq 1$? If we take a graph each component of which is a clique of size t, and add $s-1$ more vertices each adjacent to all others, then the resulting n-vertex graph has no $K_{s, t}$ minor, and has

$$
(t+2 s-3)(n-s+1) / 2+(s-1)(s-2) / 2
$$

edges; is this the maximum? This is true for $s=1,2$; and when $s=3$, Kostochka and Prince have a proof of this for all sufficiently large t (see [9]). It is open for $s=4,5$, but for $s \geq 6$ Kostochka and Prince have counterexamples [9]; indeed, Kostochka and Prince [4] proved the following:
1.3 Let s, t be positive integers with $t \gg s$. Then every graph with average degree at least $t+3 s$ has a $K_{s, t}$ minor, and there are graphs with average degree at least $t+3 s-5 \sqrt{s}$ that do not have a $K_{s, t}$ minor.

2 The main proof

This and the next four sections are devoted to the proof of 1.1. Let us fix $t \geq 2$ (we can find no advantage in proceeding by induction on t), and suppose the theorem is false for that value of t. Consequently there is a minimal counterexample, that is, a graph G with the following properties:

- G has no $K_{2, t}$ minor
- $|E(G)|>\frac{1}{2}(t+1)(|V(G)|-1)$
- $\left|E\left(G^{\prime}\right)\right| \leq \frac{1}{2}(t+1)\left(\left|V\left(G^{\prime}\right)\right|-1\right)$ for every graph G^{\prime} with no $K_{2, t}$ minor and $\left|V\left(G^{\prime}\right)\right|<$ $|V(G)|$.

We call such a graph G critical, and refer to the properties above as the criticality of G. Throughout this and the next four sections, let G be a critical graph and let $n=|V(G)|$. Since $|E(G)|>\frac{1}{2}(t+1)(n-1)$, it follows that $n \geq t+2$.

If G is a graph and $X \subseteq V(G), G \mid X$ denotes the subgraph of G induced on X, and we say X is connected if $G \mid X$ is connected. In this section we prove some preliminary lemmas about critical graphs. In particular, we prove that if G is a critical graph then G is 2-connected, and every edge of G is in at least $\frac{1}{2} t$ triangles, and every two nonadjacent vertices have at least three common neighbours. In order to prove this last statement we first have to show that $t \geq 5$. We begin with:

2.1 G is 2-connected.

Proof. For suppose not. Since $n \geq t+2 \geq 3$, there is a partition of $V(G)$ into three nonempty sets $V_{1}, V_{2},\{v\}$ for some vertex v, such that there is no edge between V_{1} and V_{2}. For $i=1,2$ let $G_{i}=G \mid\left(V_{i} \cup\{v\}\right)$; let $\left|V\left(G_{i}\right)\right|=n_{i}$ and $\left|E\left(G_{i}\right)\right|=e_{i}$. From the criticality of $G, e_{i} \leq \frac{1}{2}(t+1)\left(n_{i}-1\right)$ for $i=1,2$, so, adding, we obtain

$$
e_{1}+e_{2} \leq \frac{1}{2}(t+1)\left(n_{1}+n_{2}-2\right)
$$

But $|E(G)|=e_{1}+e_{2}$ and $n=n_{1}+n_{2}-1$, contrary to the criticality of G. This proves 2.1.
If $x, y \in V(G)$ are distinct, an $x y$-join is a vertex z different from x, y and adjacent to both x, y. Let $X(x y)$ denote the set of all $x y$-joins.
2.2 For every edge $x y$ of G there are at least $\frac{1}{2} t x y$-joins, and consequently every vertex has degree at least $\frac{1}{2} t+1$.

Proof. Let $x y$ be an edge. Let G^{\prime} be obtained from G by deleting all edges between x and $X(x y)$, and then contracting the edge $x y$. (Note that this contraction does not create any parallel edges, and so G^{\prime} is indeed a "graph" as defined in this paper.) Then $\left|E\left(G^{\prime}\right)\right|=$ $|E(G)|-|X(x y)|-1$, and $\left|V\left(G^{\prime}\right)\right|=n-1$, and by the criticality of G,

$$
\left|E\left(G^{\prime}\right)\right| \leq \frac{1}{2}(t+1)\left(\left|V\left(G^{\prime}\right)\right|-1\right)
$$

Consequently

$$
|E(G)|-|X(x y)|-1 \leq \frac{1}{2}(t+1)(n-2)
$$

and since

$$
|E(G)|>\frac{1}{2}(t+1)(n-1)
$$

by the criticality of G, it follows that $|X(x y)| \geq \frac{1}{2} t$. This proves the first assertion of 2.2 , and the second follows immediately since every vertex is incident with some edge by 2.1.

The length of a path or cycle is the number of edges in it. We use $G \backslash x$ to denote the graph obtained from G by deleting x; here x may be a vertex or an edge, or a set of vertices or edges.
2.3 Let A_{1}, A_{2} be disjoint connected subsets of $V(G)$, such that there is no edge between A_{1} and A_{2}. Let C be the set of all vertices with a neighbour in A_{1} and a neighbour in A_{2}. Then every two nonadjacent vertices in C have a common neighbour in C (and at least two common neighbours in C if t is odd). Consequently if C is nonempty then it is connected.

Proof. Let $c_{1}, c_{2} \in C$ be nonadjacent; we claim they have a common neighbour in C, and at least two if t is odd. For $i=1,2$, there is a path between c_{1}, c_{2} with interior in A_{i}, since A_{i} is connected and c_{1}, c_{2} have neighbours in A_{i}. Choose such a path, P_{i} say, of minimal length; then it is induced. Let p_{i} be the neighbour of c_{i} in P_{i}, for $i=1,2$. No $c_{1} p_{1}$-join belongs to P_{1}, since P_{1} is induced, and none is in P_{2} since $p_{1} \in A_{1}$ and all internal vertices of P_{2} are in A_{2} and there is no edge between A_{1} and A_{2}. Similarly no $c_{2} p_{2}$-join is in P_{1} or P_{2}. Suppose that $\left|X\left(c_{1} p_{1}\right) \cup X\left(c_{2} p_{2}\right)\right| \geq t$; then by contracting all edges of P_{1} except $c_{1} p_{1}$, and all edges of P_{2} except $c_{2} p_{2}$, we obtain a $K_{2, t}$ minor, a contradiction. Thus $\left|X\left(c_{1} p_{1}\right) \cup X\left(c_{2} p_{2}\right)\right| \leq t-1$. On the other hand, by $2.2,\left|X\left(c_{i} p_{i}\right)\right| \geq d$, for $i=1,2$, where d is the least integer satisfying $d \geq \frac{1}{2} t$. Hence $\left|X\left(c_{1} p_{1}\right) \cap X\left(c_{2} p_{2}\right)\right| \geq 2 d-t+1$. But every vertex in $X\left(c_{1} p_{1}\right) \cap X\left(c_{2} p_{2}\right)$ has neighbours in both A_{1} and A_{2}, and therefore belongs to C, and is a common neighbour of c_{1}, c_{2} in C. This proves 2.3.

A related result is:
2.4 Let A_{1}, A_{2} be disjoint connected subsets of $V(G)$ with union $V(G)$, and let C be the set of all vertices in A_{2} with a neighbour in A_{1}. Then C is connected.

Proof. Suppose not; then there is a partition of C into two nonempty subsets X_{1}, X_{2}, such that there is no edge between X_{1} and X_{2}. Since A_{2} is connected, there is a path of $G \mid A_{2}$ with one end in X_{1} and the other in X_{2}. Choose such a path, P_{2} say, with minimum length. Let its ends be $c_{i} \in X_{i}$ for $i=1,2$. Since c_{1}, c_{2} both have neighbours in A_{1}, there is a minimal path P_{1} between c_{1}, c_{2} with interior in A_{1}. For $i=1,2$, let p_{i} be the neighour of c_{i} in P_{i}. By 2.2, $\left|X\left(c_{i} p_{i}\right)\right| \geq t / 2$ for $i=1,2$, and no $c_{i} p_{i}$-join belongs to P_{1} or to P_{2}, and if $X\left(c_{1} p_{1}\right) \cap X\left(c_{2} p_{2}\right)=\emptyset$ then we find a $K_{2, t}$ minor. Thus some vertex $v \in X\left(c_{1} p_{1}\right) \cap X\left(c_{2} p_{2}\right)$. Since p_{2} does not belong to C, it follows that p_{2} has no neighbour in A_{1} and so $v \notin A_{1}$. Consequently $v \in A_{2}$, since $A_{1} \cup A_{2}=V(G)$; and v is adjacent to $p_{1} \in A_{1}$, and so $v \in C$; yet v has neighbours in both X_{1}, X_{2}, which is impossible. This proves 2.4.

It follows from 2.4 that for every vertex v, the set of neighbours of v is connected (taking $A_{1}=\{v\}$ and $A_{2}=V(G) \backslash\{v\}$; the latter is connected by 2.1).
2.5 For every two nonadjacent vertices x, x^{\prime} there are at least three $x x^{\prime}$-joins, and so G is 3 -connected.

Proof. Suppose there are at most two. Since G is 2-connected, there are two induced paths P, Q between x, x^{\prime}, vertex-disjoint except for their ends; and since there are at most two $x x^{\prime}$ joins, we may choose P, Q such that every $x x^{\prime}$-join is a vertex of one of P, Q. Let p, q be the neighbours of x in P, Q respectively, and define p^{\prime}, q^{\prime} similarly for x^{\prime}. Let N be the set of all neighbours of x, and define N^{\prime} similarly. Let $d=\left\lceil\frac{1}{2} t\right\rceil$.

Let us suppose that:
(1) There do not exist disjoint connected subsets $A, B, C_{1}, \ldots, C_{d}$ of $N \cup\{x\}$ with the following properties:

- for $1 \leq i \leq d$ there is an edge of G between C_{i} and A, and an edge of G between C_{i} and B
- $p \in A$ and $q \in B$.

We shall derive several consequences of this, and eventually reach a contradiction.
Let H be the subgraph $G \mid N$. Every vertex of H has degree at least d in H, since for each $v \in V(H)$, there are at least $d x v$-joins in G, by 2.2. If p has d neighbours in H different from q, we may set $A=\{p\}, B=\{q, x\}$, and let C_{1}, \ldots, C_{d} each consist of some neighbour of p different from q, contrary to (1). So p has degree exactly d in H, and p, q are adjacent; let the other neighbours of p be v_{1}, \ldots, v_{d-1} say. If q is adjacent in H to each of v_{1}, \ldots, v_{d-1}, we may set $A=\{p\}, B=\{q\}, C_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq d-1$ and $C_{d}=\{x\}$, contrary to (1). Thus we may assume that $d \geq 2$ and q is not adjacent to v_{d-1}. Let $Y=N \backslash\left\{p, q, v_{1}, \ldots, v_{d-1}\right\}$.
(2) If $r_{1} \cdots-r_{k}$ is a path R of H with $r_{1} \in\left\{v_{1}, \ldots, v_{d-1}\right\}$ and $r_{2}, \ldots, r_{k} \in Y$, then r_{k} has at most one neighbour in Y different from r_{2}, \ldots, r_{k-1}.

For suppose it has two, say y_{1}, y_{2}. Let $r_{1}=v_{j}$ say. Then we may set $A=\{p\} \cup V(R), B=$ $\{q, x\}, C_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq d-1$ with $i \neq j, C_{j}=\left\{y_{1}\right\}$, and $C_{d}=\left\{y_{2}\right\}$, contrary to (1). This proves (2).

Suppose first that $d=2$; thus every vertex in H has degree at least two. If the edge $p q$ does not belong to a cycle of H, then (by taking a maximal path containing p and not q) it follows that there is a path between p and some vertex of H with degree at least three, not passing through q; but a minimal such path is contrary to (2). Thus there is a cycle of H containing $p q$, say $p=p-p_{1} \cdots-p_{k}-q-p$; but then we may set $A=\{p\}, B=\left\{p_{2}, \ldots, p_{k}, q\right\}$, $C_{1}=\{x\}$, and $C_{2}=\left\{p_{1}\right\}$, contrary to (1).

Thus $d \geq 3$. By taking $k=1$ and $r_{1}=v_{d-1}$ we deduce that v_{d-1} has at most one neighbour in H different from all of $p, v_{1}, \ldots, v_{d-2}$. But v_{d-1} has degree at least d in H, and so v_{d-1} is adjacent to all of $p, v_{1}, \ldots, v_{d-2}$, and has exactly one more neighbour in H, say v_{d}.

By taking $k=2, r_{1}=v_{d-1}$ and $r_{2}=v_{d}$, we deduce from (2) that v_{d} has at most one neighbour in Y. Suppose that v_{d} is not adjacent to q in H. Since v_{d} has degree at least d in H, v_{d} is adjacent to all of v_{1}, \ldots, v_{d-1} and it has exactly one other neighbour in H, say v_{d+1}.

By (2) with $k=3$ and $r_{1}=v_{d-1}, r_{2}=v_{d}$ and $r_{3}=v_{d+1}$, we deduce that v_{d+1} has at most one neighbour in Y different from v_{d}. But each of v_{1}, \ldots, v_{d-1} has at most one neighbour in Y, and they are adjacent to $v_{d} \in Y$, as we already saw, so v_{d+1} has at most two neighbours in H different from q. Since v_{d+1} has at least $d \geq 3$ neighbours in H, we deduce that q, v_{d+1} are adjacent. But then we may set $A=\{p\}, B=\left\{q, v_{d+1}, v_{d}\right\}, C_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq d-1$, and $C_{d}=\{x\}$, contrary to (1). This proves that v_{d} is adjacent to q.

If v_{d} is adjacent to all of v_{1}, \ldots, v_{d-1}, we may set $A=\{p\}, B=\left\{q, v_{d}\right\}, C_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq d-1$ and $C_{d}=\{x\}$, contrary to (1). So we may assume that v_{d} is nonadjacent to v_{1} say. We already saw that v_{d} has at most one neighbour in Y; and since it has degree at least d in H, v_{d} is adjacent to $v_{2}, \ldots, v_{d-1}, q$ and to one new vertex. If q is adjacent to v_{1}, we may set $A=\{p\}, B=\left\{q, v_{d}\right\}, C_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq d-1$, and $C_{d}=\{x\}$, contrary to (1). Thus q is nonadjacent to v_{1}. By the same argument (with v_{1}, v_{d-1} exchanged) we deduce that v_{1} has a unique neighbour (say v_{d+1}) in Y, and is adjacent to all of $v_{2}, \ldots, v_{d_{1}}$, and v_{d+1} is adjacent to all except one of v_{2}, \ldots, v_{d-1}. Now $v_{d+1} \neq v_{d}$ since v_{d} is nonadjacent to v_{1}, and at least $d-3$ of v_{1}, \ldots, d_{d-1} are adjacent to both v_{d}, v_{d+1}. Since v_{1}, \ldots, v_{d-1} each have at most one neighbour in Y, we deduce that $d=3$. But then we may set $A=\{p\}, B=\left\{q, v_{3}, v_{4}\right\}$, $C_{1}=\left\{v_{1}\right\}, C_{2}=\left\{v_{2}\right\}$ and $C_{3}=\{x\}$. This proves that our assumption of (1) was false.

Consequently there exist disjoint connected subsets $A, B, C_{1}, \ldots, C_{d}$ of $N \cup\{x\}$ with the following properties:

- for $1 \leq i \leq d$ there is an edge of G between C_{i} and A, and an edge of G between C_{i} and B
- $p \in A$ and $q \in B$.

Similarly, if N^{\prime} denotes the set of neighbours of x^{\prime}, and p^{\prime}, q^{\prime} are the neighbours of x^{\prime} in P, Q respectively, there exist disjoint connected subsets $A^{\prime}, B^{\prime}, C_{1}^{\prime}, \ldots, C_{d}^{\prime}$ of $N^{\prime} \cup\left\{x^{\prime}\right\}$ with the following properties:

- for $1 \leq i \leq d$ there is an edge of G between C_{i}^{\prime} and A^{\prime}, and an edge of G between C_{i}^{\prime} and B^{\prime}
- $p^{\prime} \in A^{\prime}$ and $q^{\prime} \in B^{\prime}$.

But then contracting all edges with both ends in one of

$$
A \cup A^{\prime} \cup\left(V(P) \backslash\left\{x, x^{\prime}\right\}\right), B \cup B^{\prime} \cup\left(V(Q) \backslash\left\{x, x^{\prime}\right\}\right), C_{1}, \ldots, C_{d}, C_{1}^{\prime}, \ldots, C_{d}^{\prime}
$$

gives a $K_{2, t}$ minor, a contradiction. This proves 2.5.

3 Vertices of large degree

In this section we prove some results about vertices of degree at least $t+1$, and particularly about vertices with degree close to n. We denote the complement graph of G by \bar{G}. A cut of G is a partition $\left(A_{1}, A_{2}, C\right)$ of $V(G)$ such that A_{1}, A_{2} are nonempty, and there is no edge between A_{1} and A_{2}; and if $|C|=k$ we call it a k-cut. If $X \subseteq V(G)$, by a component of X we mean the vertex set of a component of $G \mid X$. First we need:
$3.1 n \geq t+4$.
Proof. We are given that $t \geq 2$, and since $|E(G)|>\frac{1}{2}(t+1)(n-1)$ it follows that $t+1<n$. Suppose that $n=t+2$. Then the complement \bar{G} has fewer than

$$
\frac{1}{2} n(n-1)-\frac{1}{2}(n-1)^{2}=\frac{1}{2}(n-1)
$$

edges, and so some two vertices have degree 0 in \bar{G}; so in G these two vertices are both adjacent to all others, and G has a $K_{2, t}$ subgraph, a contradiction.

Now suppose that $n=t+3$. Then \bar{G} has fewer than

$$
\frac{1}{2} n(n-1)-\frac{1}{2}(n-2)(n-1)=n-1
$$

edges, and so at most $n-2$. Thus there are two vertices of \bar{G} both with degree at most one. If some vertex has degree zero in \bar{G}, choose another with degree at most one; then in G they have at least t common neighbours and so G has a $K_{2, t}$ subgraph, a contradiction. So every vertex has degree at least one in \bar{G}. Let v_{1}, \ldots, v_{k} be those with degree one, and u_{1}, \ldots, u_{k} their respective neighbours. Thus $k \geq 2$. If $u_{1}=u_{2}$ or $u_{1}=v_{2}$, then in G, v_{1}, v_{2} have t common neighbours, a contradiction. Consequently $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$ are all distinct. If u_{1} has only two neighbours in \bar{G}, say v_{1}, w_{1}, then u_{1}, v_{1} have t common neighbours in G; so each u_{i} has degree at least three in \bar{G}. Hence the sum of the degrees of all vertices in \bar{G} is at least $2 n$, a contradiction. This proves 3.1.
3.2 If x_{1}, x_{2} are nonadjacent vertices then $\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right) \leq n+t-4$, while if x_{1}, x_{2} are adjacent then $\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right) \leq n+t-2$.

Proof. Let G_{0} be the graph obtained from G by deleting the edge $x_{1} x_{2}$ if it exists (and $G_{0}=G$ if not). For $i=1,2$ let d_{i} be the degree of x_{i} in G_{0}. We need to show that $d_{1}+d_{2} \leq n+t-4$. There do not exist t paths in G_{0} between x_{1}, x_{2}, disjoint except for their ends, because then G would contain a $K_{2, t}$ minor. Thus by Menger's theorem there is a partition of $V(G)$ into three sets A_{1}, A_{2}, C with $x_{1} \in A_{1}, x_{2} \in A_{2}$, such that $|C| \leq t-1$ and there are no edges between A_{1} and A_{2}. Now for $i=1,2, d_{i} \leq\left|A_{i}\right|+|C|-1$, and so

$$
d_{1}+d_{2} \leq\left|A_{1}\right|+\left|A_{2}\right|+2|C|-2=n+|C|-2 \leq n+t-3 .
$$

We may therefore assume that equality holds, and so $|C|=t-1$ and for $i=1,2 x_{i}$ is adjacent to every other vertex in $A_{i} \cup C$. By $2.5|C| \geq 3$ and so $t \geq 4$.

By 3.1, $\left|A_{1}\right|+\left|A_{2}\right| \geq 5$ since $|C| \leq t-1$, and so we may assume that $\left|A_{1}\right| \geq 3$. If some $c \in C$ is adjacent to two members a, a^{\prime} of $A_{1} \backslash\left\{x_{1}\right\}$, then contracting the edge $x_{2} c$ gives a $K_{2, t}$ minor, a contradiction. Thus each vertex in C has at most one neighbour in $A_{1} \backslash\left\{x_{1}\right\}$.

Suppose that $A_{1} \backslash\left\{x_{1}\right\}$ is stable. Choose distinct $a, a^{\prime} \in A_{1} \backslash\left\{x_{1}\right\}$; then $\operatorname{deg}(a)+\operatorname{deg}\left(a^{\prime}\right) \leq$ $|C|+2=t+1$, contrary to 2.2 . Thus there is an edge $a a^{\prime}$ with $a, a^{\prime} \in A_{1} \backslash\left\{a_{1}\right\}$. By 2.5 there is an $a x_{2}$-join, and so there exists $c \in C$ adjacent to a. By 2.2 there are at least $\frac{1}{2} t a a^{\prime}$-joins, and so at least two, since $t \geq 3$; let b be an $a a^{\prime}$-join different from x_{1}. Then $b \notin C$, and so $b \in A_{1} \backslash\left\{x_{1}\right\}$. Since both a^{\prime}, b are adjacent to both x_{1}, a, it follows that contracting the edges $x_{2} c$ and $a c$ gives a $K_{2, t}$ minor, a contradiction. This proves 3.2.

For each vertex $v \in V(G)$, let us define $\operatorname{surplus}(v)=\operatorname{deg}(v)-t$, and for a subset $X \subseteq V(G)$, surplus (X) denotes the sum of $\operatorname{surplus}(v)$ over all $v \in X$.
3.3 surplus $(V(G)) \geq n-t$, and at least three vertices have positive surplus.

Proof. By the criticality of $G, 2|E(G)| \geq(t+1)(n-1)+1$, and so $2|E(G)|-n t \geq n-t$. Consequently

$$
\operatorname{surplus}(V(G))=\sum_{v \in V(G)}(\operatorname{deg}(v)-t)=2|E(G)|-n t \geq n-t
$$

This proves the first assertion. For the second, note that 3.2 implies that for every two vertices x_{1}, x_{2}, surplus $\left(x_{1}\right)+\operatorname{surplus}\left(x_{2}\right) \leq n-t-2$, and so at least three vertices have positive surplus. This proves 3.3.
3.4 For every vertex v of G there are at least two vertices nonadjacent to v.

Proof. Suppose there is at most one such vertex, and so $|A| \geq n-2$, where A is the set of neighbours of v. By 3.3 there are at least three vertices with degree at least $t+1$, so at least one of them is in A, say u. Thus u has at least $t-1$ neighbours in A. Now u, v have at most $t-1$ common neighbours, since G has no $K_{2, t}$ subgraph; and so $|N|=t-1$, where N is the set of neighbours of u in A. By 3.1, $n \geq t+4$, and so $|A| \geq t+2$. Let $M=A \backslash(N \cup\{u\})$. Now $|M| \geq 2$; choose $m_{1}, m_{2} \in M$, distinct. By 2.5 and by 2.2 , there are at least three $m_{1} m_{2}$-joins, and u is not any of them, so at least one is in $A \backslash\{u\}$. If $w \in N$ is an $m_{1} m_{2}$-join, then contracting the edge $u w$ gives a $K_{2, t}$ minor. Thus some $m_{3} \in M$ is an $m_{1} m_{2}$-join. By 2.5, there exists $x \in N$ adjacent to m_{3}. But then contracting the edges $u x, x m_{3}$ gives a $K_{2, t}$ minor. This proves 3.4.
3.5 G is 5 -connected, and so $t \geq 6$.

Proof. Let $\left(A_{1}, A_{2}, C\right)$ be a cut of G, chosen with $|C|$ minimum. Suppose that $|C| \leq 4$. For each $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$, since a_{1}, a_{2} have three common neighbours by 2.5 , it follows that they both have at least three neighbours in C. Thus every vertex in $V(G) \backslash C$ has at least three neighbours in C. Choose $c, c^{\prime} \in C$; then since $|V(G) \backslash C| \geq n-4 \geq t$ by 3.1, some vertex in $V(G) \backslash C$ is not adjacent to one of c, c^{\prime}. Consequently $|C|=4$.

Suppose that $C=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ where $c_{1} c_{2}$ and $c_{3} c_{4}$ are edges. Every vertex in $V(G) \backslash C$ is adjacent to one of c_{1}, c_{2} and to one of c_{3}, c_{4}, and it follows that contracting the edges $c_{1} c_{2}$ and $c_{3} c_{4}$ gives a $K_{2, t}$ minor. Hence no two edges of $G \mid C$ are disjoint. But C is connected, by 2.3, and so we may assume that some vertex $c \in C$ is adjacent to every vertex in $C \backslash\{c\}$, and the other vertices in C are pairwise nonadjacent. By 3.4 there is a vertex nonadjacent to c, say $a_{1} \in A_{1}$. Choose $a_{2} \in A_{2}$; then $C \backslash\{c\}$ is the set of all $a_{1} a_{2}$-joins, and yet $C \backslash\{c\}$ is not connected, contrary to 2.3 . Thus $|C| \geq 5$. This proves that G is 5 -connected. By 3.4 there are two nonadjacent vertices, and therefore there are five paths joining them, with disjoint interiors. Since G has no $K_{2, t}$ minor it follows that $t \geq 6$. This proves 3.5.

4 Neighbour sets of little subsets

If $W \subseteq V(G)$, we denote by $N(W)$ the set of all vertices of G not in W but with a neighbour in W, and $M(W)$ the set of vertices not in W with no neighbour in W. For a vertex v, we write $N(v), M(v)$ for $N(\{v\}), M(\{v\})$. In this section we give the central argument of the proof of 1.1 ; we show that either $t \leq 10$ or there is no edge $w_{1} w_{2}$ with $\left|N\left(\left\{w_{1}, w_{2}\right\}\right)\right| \geq t+4$. Then the remainder of the proof of 1.1 consists of handling the cases left open by this result.

Several of the steps to come depend on finding a small (at most four vertices) connected subset W, such that $|N(W)|$ is large (at least $t+3$ and preferably larger), and trying to find a connected subset W^{\prime} disjoint from W such that $N\left(W^{\prime}\right)$ has at least t vertices in common with $N(W)$ (for this would yield a $K_{2, t}$ minor). We begin with some lemmas. We denote by $\lambda(W)$ the minimum k such that for every nonempty subset $X \subseteq W$, some vertex in X has at most k neighbours in X. (This is sometimes called the degeneracy of $G \mid W$.)
4.1 Let $W \subseteq V(G)$.

- If W is connected and $|W| \leq 4$ then $N(W)$ is connected.
- Every vertex in $N(W)$ has at least $\frac{1}{2} t-\lambda(W)$ neighbours in $N(W)$.

Proof. To prove the first statement, suppose that W is connected and $|W| \leq 4$. By 3.5, $V(G) \backslash W$ is connected. But also W is connected, so $N(W)$ is connected by 2.4. For the second statement, let $v \in N(W)$. Let X be the set of neighbours of v in W. Since X is nonempty, some vertex $x \in X$ has at most $\lambda(W)$ neighbours in X. But there are at least $\frac{1}{2} t$ $v x$-joins by 2.2 , and at most $\lambda(W)$ of them are in W, since x has at most $\lambda(W)$ neighbours in X. Thus all the others are in $N(W)$. This proves 4.1.

If $X \subseteq V(G)$ we say an edge is within X if it has both ends in X. Let us say a grasp is a pair (X, Y) of disjoint subsets of $V(G)$, such that X is nonempty and connected and every vertex in Y has a neighbour in X.
4.2 Let $W \subseteq V(G)$ be connected with $|W| \leq 4$. Let (X, Y) be a grasp where $X \cap W=\emptyset$ and $Y \subseteq N(W)$. Let $Z=N(W) \backslash(X \cup Y)$.

- If $|W| \leq 2$ then $|Z|<2(t-|Y|)$.
- If $3 \leq|W| \leq 4$ and $G \mid W$ is not isomorphic to K_{4}, and $t \geq 11$, then $|Z| \leq 2(t-|Y|)$.

Proof. With G, W fixed, we prove both claims simultaneously by induction on $|V(G)|-\mid X \cup$ $Y \mid$. If some $z \in Z$ has a neighbour in X, then the result follows from the inductive hypothesis applied to the grasp $(X, Y \cup\{z\})$; while if some $v \in M(W) \backslash X$ has a neighbour in X, the result follows from the inductive hypothesis applied to the grasp $(X \cup\{v\}, Y)$. Thus we may assume that
(1) $N(X) \subseteq Y \cup W$.

We may also assume that
(2) If $z_{1}, z_{2} \in Z$ are distinct then every $z_{1} z_{2}$-join belongs to $Z \cup W$.

For suppose that u is a $z_{1} z_{2}$-join that is not in $Z \cup W$. Thus either $u \in X \cup Y$, or $u \in M(W) \backslash X$. Certainly $u \notin X$ since $z_{1} \notin N(X)$ by (1). If $u \in Y$, the result follows from the inductive hypothesis applied to the grasp

$$
\left(X \cup\{u\},(Y \backslash\{u\}) \cup\left\{z_{1}, z_{2}\right\}\right)
$$

Thus $u \in M(W) \backslash X$, and so $u \notin N(X)$ by (1). Choose $x \in X$, and let y be a $u x$-join. Since $u \notin W \cup N(W)$, it follows that $y \notin W$, and so $y \in Y$ by (1). But then the result follows from the inductive hypothesis applied to the grasp

$$
\left(X \cup\{y, u\},\left(Y \backslash\{y\} \cup\left\{z_{1}, z_{2}\right\}\right) .\right.
$$

This proves (2).
We may assume that
(3) Every vertex in Z with a neighbour in Y has at most two neighbours in Z, and has no neighbours in Z if $t \geq 11$.

For suppose some $z \in Z$ has neighbours $z_{1}, \ldots, z_{d} \in Z$, where $d \geq 1$, and a neighbour $y \in Y$. If $d \geq 3$ then the result follows from the inductive hypothesis applied to the grasp

$$
\left(X \cup\{y, z\},(Y \backslash\{y\}) \cup\left\{z_{1}, z_{2}, z_{3}\right\}\right)
$$

so we may assume that $d \leq 2$; and hence we may also assume that $t \geq 2|W|+3$. There are at least $\frac{1}{2} t z z_{1}$-joins in G; they all belong to $Z \cup W$, by (2); but at most $d-1$ are in Z, and so $d-1+|W| \geq t / 2$. Since $d \leq 2$, this proves (3). This proves (3).
(4) Every vertex in Z has a neighbour in Y.

For suppose first that $|W| \leq 2$, and let $x \in X$. For each $z \in Z$, there are at least three $x z$-joins by 2.5 , and at least one, y say, is not in W. By (1) $y \in Y$, and so z has a neighbour in Y as claimed. Thus we may assume that $|W| \geq 3$, and so $t \geq 11$ by hypothesis. Suppose that some vertex in Z has no neighbour in Y. Since $Y \neq \emptyset$ and $N(W)$ is connected by 4.1, there are distinct vertices $z, z^{\prime} \in Z$ and $y \in Y$ such that z^{\prime} has no neighbours in Y and z is adjacent to both y, z^{\prime}; but this contradicts the final assertion of (3). This proves (4).

Now let us complete the proof of the first assertion of the theorem. Let $|W| \leq 2$, and suppose for a contradiction that $|Z| \geq 2(t-|Y|)$. Since $|Y|<t$ (because otherwise contracting all edges within X and within W produces a $K_{2, t}$ minor), it follows that $|Z| \geq 2$. If $z_{1}, z_{2} \in Z$ are distinct, 2.2 and 2.5 imply that there is a $z_{1} z_{2}$-join $u \notin W$, and therefore in Z by (2). It follows that every two vertices in Z have a common neighbour in Z. In particular, we may choose z_{1}, z_{2} adjacent, and so there are three vertices in Z, pairwise adjacent, say z_{1}, z_{2}, z_{3}. By (3) and (4), no other vertex in Z has a common neighbour with z_{1}, and so $Z=\left\{z_{1}, z_{2}, z_{3}\right\}$. Since $|Z| \geq 2(t-|Y|)$, it follows that $|Y|=t-1$. Choose $y \in Y$ adjacent to z_{3}. Then contracting all edges within $X \cup\left\{y, z_{3}\right\}$ and W yields a $K_{2, t}$ minor, a contradiction. This completes the proof of the first assertion.

Now we prove the second assertion. Thus, $t \geq 11 ; G \mid W$ is not isomorphic to K_{4} (and so $\lambda(w) \leq 2) ; Z$ is stable by (3) and (4); and we suppose for a contradiction that $|Z| \geq$ $2(t-|Y|)+1$. Since every vertex in Z has at least $t / 2-\lambda(W) \geq t / 2-2$ neighbours in $N(W)$ from 4.1, and all these neighbours belong to Y by (4), it follows that there are at least $|Z|(t / 2-2)$ edges between Y and Z. But there are at most $|Y|$ such edges, by (2), and so $|Z|(t / 2-2) \leq|Y|$. Now $|Z| \geq 2(t-|Y|)+1$, and so $(2(t-|Y|)+1)(t / 2-2) \leq|Y|$, that is $(2 t+1)(t / 2-2) \leq|Y|(t-3) \leq(t-1)(t-3)$, a contradiction since $t \geq 11$. This proves 4.2.

The proof of the next theorem is the central argument of the paper, disposing of "most" possibilities for a critical graph G.
4.3 Let $W \subseteq V(G)$ be connected with $|W| \leq 2$. If $t \geq 11$ then $|N(W)| \leq t+3$.

Proof. Suppose that $t \geq 11$ and $|N(W)| \geq t+4$. By 3.4 we may assume that $|W|=2$, $W=\left\{w_{1}, w_{2}\right\}$ say. Let $A=N(W)$ and $B=M(W)$. For each vertex $v \in A \cup B$, let $d(v)$ denote the number of neighbours of v in $A \cup B$.
(1) Let $v_{1}, v_{2} \in A \cup B$ be distinct. Then $d\left(v_{1}\right)+d\left(v_{2}\right) \leq 2 t-2$; and if $d\left(v_{1}\right)+d\left(v_{2}\right) \geq 2 t-3$ then v_{1}, v_{2} are adjacent and there is no $v_{1} v_{2}$-join in B.

For we may assume that $d\left(v_{1}\right)+d\left(v_{2}\right) \geq 2 t-3$. For $i=1,2$, let A_{i} denote the set of vertices in A different from v_{1}, v_{2} that are adjacent to v_{i}, and let B_{i} be the set of vertices in B different from v_{1}, v_{2} that are adjacent to v_{i}. For $i=1,2$ let $u_{i}=v_{i}$ if $v_{i} \in A$ and let $u_{i} \in A \backslash\left\{v_{1}, v_{2}\right\}$ be adjacent to v_{i} if $v_{i} \in B$. (Such vertices u_{i} exist by 2.5.)

By the second assertion of 4.2, applied taking $W^{\prime}=W \cup\left\{u_{1}, v_{1}\right\}$ to be the set called W in that theorem, $X=\left\{v_{2}\right\}, Y$ the set of neighbours of v_{2} in $N\left(W^{\prime}\right)$, and $Z=N\left(W^{\prime}\right) \backslash(X \cup Y)$, we deduce that $|Z| \leq 2(t-|Y|)$, since $t \geq 11$. For $i=1,2$, let $a_{i}=1$ if $v_{i} \in A$ and $a_{i}=0$ otherwise; and let $b_{1}=1$ if $u_{1} \in A_{2}$ (and therefore $u_{i} \neq v_{i}$ and $v_{i} \in B$), and $b_{1}=0$ otherwise, and define b_{2} similarly. Now

$$
|Z| \geq\left|A \backslash\left(\left\{u_{1}, v_{2}\right\} \cup A_{2}\right)\right|+\left|B_{1} \backslash B_{2}\right| \geq t+3-\left|A_{2}\right|+b_{1}-a_{2}+\left|B_{1} \backslash B_{2}\right|
$$

since $|A| \geq t+4$; and $|Y| \geq\left|A_{2}\right|-b_{1}+\left|B_{1} \cap B_{2}\right|$. Consequently

$$
t+3-\left|A_{2}\right|+b_{1}-a_{2}+\left|B_{1} \backslash B_{2}\right| \leq 2\left(t-\left|A_{2}\right|+b_{1}-\left|B_{1} \cap B_{2}\right|\right)
$$

that is,

$$
\left|A_{2}\right|+\left|B_{1}\right|+\left|B_{1} \cap B_{2}\right| \leq t+b_{1}+a_{2}-3
$$

By exchanging v_{1}, v_{2} and adding, we obtain

$$
\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|+\left|B_{2}\right|+2\left|B_{1} \cap B_{2}\right| \leq 2 t-6+a_{1}+a_{2}+b_{1}+b_{2} .
$$

Now for $i=1,2, d\left(v_{i}\right)=\left|A_{i}\right|+\left|B_{i}\right|+x$, where $x=1$ if v_{1}, v_{2} are adjacent and otherwise $x=0$. Let $d\left(v_{1}\right)+d\left(v_{2}\right)=2 t-3+y$, where $y \geq 0$; we deduce that

$$
\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|+\left|B_{2}\right|+2 x=2 t-3+y
$$

Combining this with the previous inequality, we deduce that

$$
2 t-3+y-2 x+2\left|B_{1} \cap B_{2}\right| \leq 2 t-6+a_{1}+a_{2}+b_{1}+b_{2}
$$

that is, $3+y+2\left|B_{1} \cap B_{2}\right| \leq 2 x+a_{1}+a_{2}+b_{1}+b_{2}$. Now if $v_{1} \in A$ then $v_{1} \notin A_{2}$ from the definition of A_{2}, and so $a_{1}+b_{1} \leq 1$, and similarly $a_{2}+b_{2} \leq 1$; and so $a_{1}+a_{2}+b_{1}+b_{2} \leq 2$, and therefore $y+1+2\left|B_{1} \cap B_{2}\right| \leq 2 x$. Consequently $x=1$ and $\left|B_{1} \cap B_{2}\right|=0$, and $y \leq 1$. This proves (1).
(2) $d(v) \leq t-1$ for each $v \in A \cup B$.

For suppose that $d\left(v_{1}\right) \geq t$ for some $v_{1} \in A \cup B$; say $d\left(v_{1}\right)=t+x$ where $x \geq 0$. By (1), $d\left(v_{2}\right) \leq t-x-2$ for every $v_{2} \in A \cup B$ different from v_{1}, and if v_{1}, v_{2} are nonadjacent then $d\left(v_{2}\right) \leq t-x-4$. Thus one vertex of $G \mid(A \cup B)$ has degree $t+x ; t+x$ more have degree at most $t-x-2$; and the remaining $n-t-x-3$ vertices have degree at most $t-x-4$. Consequently the sum over all $v \in A \cup B$ of $d(v)$ is at most
$t+x+(t+x)(t-x-2)+(n-t-x-3)(t-x-4)=t n-x(n-6)-4(n-3) \leq t n-4 n+12$.

By $3.2, \operatorname{deg}\left(w_{1}\right)+\operatorname{deg}\left(w_{2}\right) \leq n+t-2$, and so

$$
2|E(G)| \leq t n-4 n+12+2(n+t-2)-2=t n-2 n+6+2 t .
$$

But from the criticality of $G, 2|E(G)|>(t+1)(n-1)$, and so $3 n<7+3 t$, contrary to 3.1. This proves (2).

By (2), every vertex in A has degree at most $t+1$, and every vertex in B has degree at most $t-1$. Let X be the set of all vertices $v \in A$ with $\operatorname{deg}(v)=t+1$. By the first assertion of 4.2, every vertex in A has at most $t-2$ neighbours in A (in fact, at most $t-4$, though we do not need this); and consequently every vertex in X has a neighbour in B. But if $v \in X$ then $d(v) \geq t-1$, and so no two members of $X \cap A$ are adjacent to the same member of B. It follows that $|X| \leq|B|$. But surplus $(A) \leq|X|$, and surplus $(B) \leq-|B|$, and so $\operatorname{surplus}(A \cup B) \leq 0$. Since $\operatorname{surplus}(V(G)) \geq n-t$ by 3.3, it follows that $\operatorname{surplus}\left(w_{1}\right)+\operatorname{surplus}\left(w_{2}\right) \geq n-t$, contrary to 3.2. This proves 4.3.

5 Small t cases

In this section we focus on strengthening 4.3 when t is small. We make a start on this with the following corollary of 4.2 :

$5.1 t \geq 7$.

Proof. By 3.3 there is a vertex w of degree at least $t+1$. Let C be a component of $M(w)$ (this exists, by 3.4); then $N(C) \subseteq N(w)$. By $3.5,|N(C)| \geq 5$. By the first assertion of 4.2 applied to the grasp $(C, N(C))$, we deduce that $|N(W) \backslash N(C)|<2(t-|N(C)|)$, and so $2 t>|N(W)|+|N(C)| \geq(t+1)+5$. This proves 5.1.

We need an elaboration of this. Given integers $h \geq 3$ and $z \geq 0$, we define $\beta_{0}=0$, and for $1 \leq i \leq h-2$, we define inductively

$$
\beta_{i}=\beta_{i-1}+\left\lceil 3\left(z-\beta_{i-1}\right) /(h-i+1)\right\rceil .
$$

We write $\beta_{i}(h, z)$ for β_{i} to show the dependence on h, z. Note that $\beta_{i}(h, z) \leq z$ and $\beta_{i}(h, z)$ is monotone nondecreasing in z. (To see the latter, prove inductively that if z is increased by 1 then either $\beta_{i}(h, z)$ remains the same or increases by 1.)
5.2 Let $W \subseteq V(G)$ be connected with $|W| \leq 2$. Then there exists h with $5 \leq h \leq t-2$ such that

$$
\beta_{i}(h, z)-2 i<2 t-h-|N(W)|
$$

for all i with $0 \leq i \leq h-2$, where $z=|N(W)|-h$.

Proof. If $|N(W)| \leq t$, then every choice of h with $5 \leq h \leq t-2$ satisfies the theorem (and there is such a choice by 5.1), since $\beta_{i}(h, z) \leq z=|N(W)|-h$ for $i>0$. Thus we may assume that $|N(W)|>t$.

Suppose first that $M(W)=\emptyset$. By 3.3, some vertex $v \in N(W)$ has degree at least $t+1$, and hence has at least $t-1$ neighbours in $N(W)$. By 4.2 applied to the grasp $(\{v\}, N(v) \cap N(W))$, we deduce that

$$
|N(W)|-(1+|N(v) \cap N(W)|)<2(t-|N(v) \cap N(W)|)
$$

and so

$$
|N(W)| \leq 2 t-|N(v) \cap N(W)| \leq t+1
$$

Thus $n \leq t+3$, contrary to 3.1. Therefore $M(W)$ is nonempty; let C be a component of $M(W)$. Let $Z=N(W) \backslash N(C)$, let $h=|N(C)|$, and let $z=|Z|=|N(W)|-h$; we will show that h, z satisfy the theorem. Certainly $h \geq 5$ since G is 5 -connected by 3.5. By 4.2 applied to the grasp $(C, N(C))$, it follows that

$$
|N(W)|-|N(C)|<2(t-|N(C)|),
$$

and since $|N(W)|>t$, we deduce that $h=|N(C)| \leq t-2$.
(1) For $0 \leq i \leq h-2$, there exists $X_{i} \subseteq N(C)$ with $\left|X_{i}\right|=i$ such that at least $\beta_{i}(h, z)$ vertices in $N(W) \backslash N(C)$ have neighbours in X_{i}.

This is trivial for $i=0$, since $\beta_{0}(h, z)=0$. We proceed by induction on i. Thus, assume that $1 \leq i \leq h-2$ and there exists $X_{i-1} \subseteq N(C)$ with $\left|X_{i}\right|=i-1$ such that $|Y| \geq \beta_{i-1}(h, z)$, where Y is the set of vertices in $N(W) \backslash N(C)$ with a neighbour in X_{i-1}. Choose $c \in C$; then every vertex in $Z \backslash Y$ has at least three common neighbours with c by 2.5 , and therefore has at least three neighbours in $N(C)$, and therefore in $N(C) \backslash X_{i-1}$, since it has no neighbour in X_{i-1}. Consequently there exists $x \in N(C) \backslash X_{i-1}$ with at least $\lceil 3|Z \backslash Y| /(h-i+1)\rceil$ neighbours in $Z \backslash Y$. Let $X_{i}=X_{i-1} \cup\{x\}$; then there are at least $|Y|+\lceil 3(z-|Y|) /(h-i+1)\rceil$ vertices in Z with a neighbour in X_{i}. Since this expression is increasing with $|Y|$ (because $h-i+1 \geq 3$), and $|Y| \geq \beta_{i-1}(h, z)$, it follows that there are at least

$$
\beta_{i-1}(h, z)+\left\lceil 3\left(z-\beta_{i-1}(h, z)\right) /(h-i+1)\right\rceil=\beta_{i}(h, z)
$$

such vertices. This proves (1).
Now let i satisfy $0 \leq i \leq h-2$, and let X_{i} be as in (1). Let Y_{i} be the set of vertices in Z with a neighbour in X_{i}. Thus $\left|Y_{i}\right| \geq \beta_{i}(h, z)$. From the first assertion of 4.2, applied to the grasp $\left(C \cup X_{i},\left(N(C) \backslash X_{i}\right) \cup Y_{i}\right)$, we deduce that

$$
|N(W)|-|N(C)|-\left|Y_{i}\right|<2\left(t-\left(h-\left|X_{i}\right|\right)-\left|Y_{i}\right|\right)
$$

that is, $z-\left|Y_{i}\right|<2 t-2 h+2 i-2\left|Y_{i}\right|$. Since $\left|Y_{i}\right| \geq \beta_{i}(h, z)$ and $z=|N(W)|-h$, it follows that $|N(W)|+\beta_{i}(h, z)<2 t-h+2 i$. This proves 5.2.

From 5.2 we deduce the following strengthening of 4.3 (note that the case of small t is still exceptional, but now it is a good exception rather than a bad one):
5.3 Let $W \subseteq V(G)$ be connected with $|W| \leq 2$. Then $|N(W)| \leq t+3$, and if $t \leq 13$ then $|N(W)| \leq t+2$.

Proof. We may assume that $|N(W)| \geq t+3$. We show first that $t \geq 14$. Choose h, z as in 5.2; then $5 \leq h \leq t-2$, and

$$
\beta_{i}(h, z)-2 i<2 t-h-|N(W)|
$$

for all i with $0 \leq i \leq h-2$. Consequently

$$
\beta_{i}(h, t+3-h)-2 i \leq t-h-4
$$

for all i with $0 \leq i \leq h-2$, since $\beta_{i}(h, z)$ is a nondecreasing function in z. Setting $i=0$, we deduce that $h \leq t-4$. In particular $t \geq 9$, since $h \geq 5$. Also we may assume $h \leq 9$, for otherwise it follows that $t \geq 14$ as required. Setting $i=1$ gives

$$
\beta_{1}(h, t+3-h) \leq t-h-2
$$

and so $3(t+3-h) / h \leq t-h-2$, that is, $3(t+3) / h \leq t-h+1$. If $h=5$ this implies $29 \leq 2 t$, and so $t \geq 15$ as required. If $h=9$ this implies $27 \leq 2 t$ as required. We may therefore assume that $6 \leq h \leq 8$. Setting $i=2$ gives $\beta_{2}(h, t+3-h) \leq t-h$, and so

$$
\lceil 3(t+3-h) / h\rceil+\lceil 3(t+3-h-\lceil 3(t+3-h) / h\rceil) /(h-1)\rceil \leq t-h,
$$

that is,

$$
3(t+3) / h+\lceil 9 /(h-4)\rceil \leq t-(h-3) .
$$

If $h=6$ this gives $19 \leq t$ as required. If $h=7$ this gives $29 \leq 2 t$ as required. If $h=8$ this gives $73 \leq 5 t$ as required. This proves that $t \geq 14$. From 4.3 it follows that $|N(W)|=t+3$. This proves 5.3.

6 Finding an edge with a large neighbourhood

Now we can complete the main proof.

Proof of 1.1.

An edge $u v$ is dominating if every vertex of G is adjacent or equal to one of u, v. Take a vertex w of maximum degree $t+s$ say, chosen if possible such that there is a dominating edge not incident with w. Let $A=N(w)$, and $B=M(w)$.
(1) Every vertex in A has at most $4-s$ neighbours in B, and at most $3-s$ if $t \leq 13$.

For let $a \in A$, with say d neighbours in B. Then $|N(\{w, a\})|=t+s-1+d$, and so by $5.3, t+s-1+d \leq t+3$, and $t+s-1+d \leq t+2$ if $t \leq 13$. This proves (1).
(2) Every vertex in B has at least $\max \left(3, \frac{1}{2} t+s-2\right)$ neighbours in A, and at least $\max \left(3, \frac{1}{2} t+\right.$ $s-1)$ if $t \leq 13$.

For let $b \in B$. Since w, b have at least three common neighbours by 2.5 , it remains (for the first assertion) to show that b has at least $\frac{1}{2} t+s-2$ neighbours in A. Choose $a \in A$ adjacent to b. There are at least $\frac{1}{2} t a b$-joins by 2.2 , and at most $3-s$ of them belong to B, since a has at most $4-s$ neighbours in B; so at least $\frac{1}{2} t+s-3$ of them belong to A and are different from a. Thus b has at least $\frac{1}{2} t+s-2$ neighbours in A. This proves the first assertion of (2), and the second follows similarly.
(3) Every vertex in A has at most $t-s$ neighbours in A.

For let $v \in A$, let Y be the set of its neighbours in A, and $Z=A \backslash(Y \cup\{v\})$. By the first assertion of $4.2,|Z|<2(t-|Y|)$, and since $|Z|=s+t-1-|Y|$, this proves (3).
(4) $s \leq 2$.

For (1) implies that $s \leq 4$. If $s=4$, then since G is connected, (1) implies that B is empty, contrary to 3.4. Suppose that $s=3$. By (2), every vertex in B has at least $\frac{1}{2} t+1$ neighbours in A, and so (1) implies that $|B| \leq 2$, and so $|B|=2$ by 3.4. The two members of B have no common neighbour, contrary to 2.2 and 2.5. This proves (4).

Let e_{1} denote the number of edges between A and B, and e_{2} the number of edges with both ends in B.
(5) If $s=2$, then $t \geq 14$ and $e_{2} \leq 1$ and $|B| \leq 3$.

For suppose that $s=2$. Suppose first that $t \leq 13$. By (1) and (2), $|A| \geq e_{1} \geq\left(\frac{1}{2} t+1\right)|B|$, and since $|A|=t+2$ and $t \geq 7$ by 5.1, it follows that $|B| \leq 2$, and so $|B|=2$ by 3.4 ; let $B=\left\{b_{1}, b_{2}\right\}$. By (1), no vertex in A is adjacent to both b_{1}, b_{2}, contrary to 2.2 and 2.5. This proves that $t \geq 14$.

By (1) and (2), $2|A| \geq e_{1} \geq\left\lceil\frac{1}{2} t\right\rceil|B|$, and since $|A|=t+2$ and $t \geq 9$ it follows that $|B| \leq 4$.
Suppose that there are three vertices $b_{1}, b_{2}, b_{3} \in B$, pairwise adjacent. Now by 2.2 there are at least $\frac{1}{2} t b_{1} b_{2}$-joins, and so there are at least $\frac{1}{2} t-2 b_{1} b_{2}$-joins in A. The same holds for $b_{1} b_{3}$ - and $b_{2} b_{3}$-joins, and all these vertices are different by (1). Thus at least $3\left(\frac{1}{2} t-2\right)$ vertices in A have neighbours in $\left\{b_{1}, b_{2}, b_{3}\right\}$, and since $3\left(\frac{1}{2} t-2\right)>t-1$ (since $t \geq 11$), it follows that G has a $K_{2, t}$ minor, a contradiction. Thus no three members of B are pairwise adjacent.

Next suppose that there exist $b_{1}, b_{2}, b_{3} \in B$ such that $b_{1} b_{2}$ and $b_{2} b_{3}$ are edges. There are at least $\frac{1}{2} t b_{1} b_{2}$-joins, all in A, and the same for $b_{2} b_{3}$-joins, and they are all different by (1), so there are at least t vertices in A with neighbours in $\left\{b_{1}, b_{2}, b_{3}\right\}$, and contracting the edges within B gives a $K_{2, t}$ minor, a contradiction. Thus every vertex in B has at most one neighbour in B.

Suppose that $e_{2} \geq 2$. Then it follows that $e_{2}=2$ and $|B|=4$, and we may assume that $b_{1} b_{2}$ and $b_{3} b_{4}$ are edges, where $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. There are at least $\frac{1}{2} t b_{1} b_{2}$-joins, all in A, and the same for $b_{3} b_{4}$-joins; and at least three $b_{1} b_{3}$-joins, by 2.5 . All these vertices are different, by (1), so $|A| \geq t+3$, a contradiction. This proves that $e_{2} \leq 1$.

Suppose that $|B|=4$, and so $n=t+7$. Now the sum of the degrees of the four vertices in B is $e_{1}+2 e_{2}$; and we have seen that $e_{1} \leq 2(t+2)$ and $e_{2} \leq 1$. Thus

$$
\operatorname{surplus}(B) \leq(2 t+6)-4 t=6-2 t .
$$

By (1) and (3), every vertex in A has degree at most $t+1$, and so $\operatorname{surplus}(A \cup\{w\}) \leq t+4$. Thus $\operatorname{surplus}(V(G)) \leq(6-2 t)+(t+4)=10-t$. But by 3.3 , $\operatorname{surplus}(V(G)) \geq n-t=7>10-t$, a contradiction. Consequently $|B| \leq 3$. This proves (5).
(6) If $s=2$ then $|B|=2$.

For suppose that $s=2$; then $2 \leq|B| \leq 3$ from 3.4 and (5). Suppose that $|B|=3$, $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ say. Then $n=t+6$. By (5), $e_{2} \leq 1$.

Suppose that $e_{2}=1$, and let $b_{1} b_{2}$ be an edge say. There are at least $\frac{1}{2} t b_{1} b_{2}$-joins in A by 2.2 , and at least $\frac{1}{2} t+1$ neighbours of b_{3}, also by 2.2 , and all these vertices are different by (1). So there are at least $t+1$ vertices in A with a neighbour in B. By 2.5, some vertex $a \in A$ is adjacent to both b_{1}, b_{3}; so contracting the edges $b_{1} b_{2}, b_{1} a, b_{3} a$ gives a $K_{2, t}$ minor, a contradiction. This proves that $e_{2}=0$.

Suppose that every vertex in A has a neighbour in B. Choose a $b_{1} b_{2}$-join $a_{1} \in A$, and a $b_{2} b_{3}$-join $a_{2} \in A$. Then by contracting the edges $b_{1} a_{1}, a_{1} b_{2}, b_{2} a_{2}, a_{2} b_{3}$ we obtain a $K_{2, t}$ minor, a contradiction. This proves that some vertex in A has no neighbour in B, and so $e_{1} \leq 2(t+1)$. Then $\operatorname{surplus}(B) \leq 2-t$, and so

$$
\operatorname{surplus}(A) \geq t-2-\operatorname{surplus}(w)+(n-t)=n-4=t+2
$$

by 3.3. By (3), every vertex in A has degree at most $t+1$, so all $t+2$ members of A have degree $t+1$. But some one of them has no neighbour in B as we already saw, and this contradicts (3). This proves (6).
(7) $s=1$, and therefore every vertex in G has degree at most $t+1$, and $t \geq|B|-1$.

For suppose that $s=2$, and therefore $|B|=2$, by (6), and so $n=t+5$. Let $B=\left\{b_{1}, b_{2}\right\}$ say. Let X be the set of all vertices in $V(G) \backslash\{w\}$ with degree at least $t+1$. By $3.2, X \cup\{w\}$ is a clique, and so $X \subseteq A$. By (1) and (3), every vertex in X has degree exactly $t+1$, and has
exactly $t-2$ neighbours in A, and is adjacent to both b_{1}, b_{2}. By $3.3,|X| \geq n-t-2=3$ since $\operatorname{surplus}(w)=2$. Let $a_{0} \in X$, and let N be its set of neighbours in A. Let a_{1}, a_{2}, a_{3} be the three vertices in A nonadjacent to a_{0}. Since each of a_{1}, a_{2}, a_{3} has at least $\frac{1}{2} t$ neighbours in A by 2.2, there are at least $3 t / 2-6$ edges between $\left\{a_{1}, a_{2}, a_{3}\right\}$ and N. Since $3 t / 2-6>t-2=|N|$ since $t \geq 9$, some vertex $a_{4} \in N$ is adjacent to two of a_{1}, a_{2}, a_{3}, say to a_{1}, a_{2}. Choose $a_{5} \in X$ different from a_{0}, a_{4}; then $a_{5} \in N$, and contracting the edges $w a_{5}, a_{0} a_{4}$ gives a $K_{2, t}$ minor, a contradiction. This proves the first statement of (7). The second follows from the choice of w. For the third, we observe from (1) that $e_{1} \leq 3|A|=3(t+1)$, and from (2) that $e_{1} \geq 3|B|$, and so $|B| \leq t+1$. This proves (7).

Let $\kappa(B)$ be the number of components of B, and let A_{0} be the set of vertices in A with no neighbour in B.
(8) $\left|A_{0}\right|+\kappa(B) \geq 3$, and for every component C of B, at most $t-2$ vertices in A have neighbours in C. (In particular, if B is connected then $\left|A_{0}\right| \geq 3$.)

For choose $T \subseteq B$ containing exactly one vertex of each component of B. Since every two members of T have a common neighbour in A by 2.5 , it follows that there is a set $S \subseteq A$ with $|S| \leq|T|-1$ such that $B \cup S$ is connected. Since contracting all edges within $B \cup S$ does not produce a $K_{2, t}$ minor, it follows that $\left|A \backslash\left(S \cup A_{0}\right)\right|<t$. Thus $t+1-(\kappa(B)-1)-\left|A_{0}\right| \leq t-1$, and this proves the first assertion. For the second, let C be a component of B. Let $Y=N(C) \subseteq A$, and $Z=A \backslash Y$. By the first assertion of $4.2,|Z|<2(t-|Y|)$, and since $|Z|=t+1-|Y|$ this proves (8).

Let X be the set of all vertices in A with degree $t+1$. Let $d=2$ if $t \leq 13$ and $d=3$ otherwise. By (1), every vertex in A has at most d neighbours in B.

$$
\begin{align*}
& |X|+e_{1}+2 e_{2} \geq(t+1)|B|+1, \text { and }|X|+\left|A_{0}\right| \leq t+1, \text { and so } \tag{9}\\
& \qquad 2 e_{2} \geq(t+1)(|B|-d-1)+(d+1)\left|A_{0}\right|+1 .
\end{align*}
$$

For since every vertex in A has degree at most $t+1$, it follows that surplus $(A \cup\{w\}) \leq|X|+1$. But $\operatorname{surplus}(B)=e_{1}+2 e_{2}-t|B|$, and by 3.3 , $\operatorname{surplus}(V(G)) \geq n-t=|B|+2$, so

$$
|X|+1+e_{1}+2 e_{2}-t|B| \geq|B|+2 .
$$

This proves the first assertion. For the second, since no vertex in A has t neighbours in A by (3), it follows that $X \cap A_{0}=\emptyset$, and so $|X|+\left|A_{0}\right| \leq t+1$. But $e_{1} \leq d\left(t+1-\left|A_{0}\right|\right)$ by (1), and so $|X|+e_{1} \leq(d+1)\left(t+1-\left|A_{0}\right|\right)$. Substituting in the first assertion, we deduce that $(d+1)\left(t+1-\left|A_{0}\right|\right)+2 e_{2} \geq(t+1)|B|+1$. This proves (9).

$$
\begin{equation*}
|B| \leq 5, \text { and if } t \leq 13 \text { then }|B| \leq 4 \tag{10}
\end{equation*}
$$

First suppose that $t \leq 13$. By (1) and (2), $2(t+1) \geq e_{1} \geq\left\lceil\frac{1}{2} t\right\rceil|B|$ and so $|B| \leq 4$ since $t \geq 7$. Thus we may assume that $t \geq 14$. By (1) and (2), $3(t+1) \geq\left(\frac{1}{2} t-1\right)|B|$, and it follows that $|B| \leq 7$. But (9) implies that $2 e_{2} \geq(t+1)(|B|-4)+1 \geq 15(|B|-4)+1$. If $|B|=7$, this implies that $2 e_{2} \geq 46$, a contradiction since $e_{2} \leq 21$. If $|B|=6$, this implies that $2 e_{2} \geq 31$, again a contradiction since $e_{2} \leq 15$. This proves (10).
(11) $|B| \leq 4$.

For suppose that $|B|=5$. By (10), $t \geq 14$ and so $d=3$. By (9), $2 e_{2} \geq t+4\left|A_{0}\right|+2 \geq 16$, and so B is connected. Thus $\left|A_{0}\right| \geq 3$ by (8), and $2 e_{2} \geq t+14 \geq 28$, which is impossible. This proves (11).

$$
\begin{equation*}
|B| \leq 3 \tag{12}
\end{equation*}
$$

For suppose that $|B|=4$. By (9), $2 e_{2} \geq(3-d)(t+1)+(d+1)\left|A_{0}\right|+1$. If B is connected then $\left|A_{0}\right| \geq 3$ by (8), and so $12 \geq 2 e_{2} \geq(3-d)(t+1)+3(d+1)+1$, which is impossible (since either $d=3$, or $d=2$ and $t \geq 7$). Thus B is not connected, and so $e_{2} \leq 3$. Consequently $6 \geq(3-d)(t+1)+(d+1)\left|A_{0}\right|+1$, and so $d=3$ and therefore $t \geq 14$, and $\left|A_{0}\right| \leq 1$.

Suppose that some vertex in B has more than one neighbour in B. Since B is not connected, it follows that B has two components C_{1}, C_{2}, where $\left|C_{1}\right|=3$ and $\left|C_{2}\right|=1$. At least three vertices in A have no neighbour in C_{1}, by (8), and so (1) implies $e_{1} \leq 3(t+1)-6$. Since (9) implies $|X|+e_{1}+2 e_{2} \geq 4 t+5$, we deduce that $|X|+2 e_{2} \geq t+8$, which is impossible since $|X| \leq t+1$ and $e_{2} \leq 3$. Thus $G \mid B$ has maximum degree at most one, and in particular $e_{2} \leq 2$.

Since $2 e_{2} \geq 4\left|A_{0}\right|+1$, we deduce that $A_{0}=\emptyset$. For every edge $u v$ of $G \mid B$, at least two (indeed, at least three) vertices of A are nonadjacent to both u, v, by (8), and since no two edges within B share an end, and every vertex in A has a neighbour in B, it follows that there are at least $2 e_{2}$ vertices in A with at most two neighbours in B. Consequently $e_{1} \leq 3(t+1)-2 e_{2}$; but $|X|+e_{1}+2 e_{2} \geq 4 t+5$ by (9), and so $|X| \geq t+2$, which is impossible. This proves (12).
(13) There is a dominating edge.

For suppose not; then every vertex in A has at most $|B|-1$ neighbours in B, and so $e_{1} \leq\left(t+1-\left|A_{0}\right|\right)(|B|-1)$. By (9),

$$
t+1-\left|A_{0}\right|+e_{1}+2 e_{2} \geq|X|+e_{1}+2 e_{2} \geq(t+1)|B|+1
$$

and so

$$
2 e_{2} \geq 1+\left|A_{0}\right||B| \geq 1+|B|(3-\kappa(B))
$$

by (8). In particular, $e_{2}>0$, and so $\kappa(B) \leq 2$; and consequently $2 e_{2} \geq 1+|B|$, and therefore $|B|=3$. We deduce that $2 e_{2} \geq 1+3(3-\kappa(B))$; so $e_{2} \geq 2$, and therefore $\kappa(B)=1$, and $2 e_{2} \geq 1+3 \times 2$, which is impossible. This proves (13).
(14) At most two vertices in A have more than one neighbour in B.

For since there are at least three vertices of degree $t+1$ by 3.3 , it is possible to choose one such that some dominating edge is not incident with it; and so from our choice of w, there is a dominating edge $v_{1} v_{2}$ say with $v_{1}, v_{2} \neq w$. If there is a vertex $a \in A$ different from v_{1}, v_{2} with at least two neighbours in B, then contracting the edges $v_{1} v_{2}$ and $w a$ gives a $K_{2, t}$ minor, a contradiction. Thus every vertex in A different from v_{1}, v_{2} has at most one neighbour in B. This proves (14).

By 3.4, we may choose distinct $b_{1}, b_{2} \in B$, adjacent if possible. There are at least three $b_{1} b_{2}$-joins by 2.5 and 2.2 , and only two of them are in A by (14), and so the third is in B. Consequently $|B|=3$, and b_{1}, b_{2} are adjacent (from the choice of b_{1}, b_{2}), and $e_{2}=3$. By (8), $\left|A_{0}\right| \geq 3$, and by (14), $e_{1} \leq t-1-\left|A_{0}\right|+6 \leq t+2$. By (9), $\left(t+1-\left|A_{0}\right|\right)+e_{1}+2 e_{2} \geq(t+1)|B|+1$, and so $(t-2)+(t+2)+6 \geq 3(t+1)+1$, a contradiction. This proves 1.1.

7 Rooted minors

Now we come to the second topic of the paper, "rooted $K_{2, t}$ minors". Let us say an expansion of H in G is a function ϕ with domain $V(G) \cup E(G)$, satisfying:

- for each vertex v of $H, \phi(v)$ is a nonnull connected subgraph of G, and the subgraphs $\phi(v)(v \in V(H))$ are pairwise vertex-disjoint
- for each edge $e=u v$ of $H, \phi(e)$ is an edge of G with one end in $V(\phi(u))$ and the other in $V(\phi(v))$.

It is easy to see that H is a minor of G if and only if there is an expansion of H in G.
Now let G be a graph, let $r, r^{\prime} \in V(G)$ be distinct, and let $t \geq 0$. We say that G contains an $r r^{\prime}$-rooted $K_{2, t}$ minor if there is an expansion ϕ of $K_{2, t}$ in G, such that $\phi(s), \phi\left(s^{\prime}\right)$ each contain one of r, r^{\prime}, where s, s^{\prime} are two nonadjacent vertices of $K_{2, t}$ of degree t.

The result of this section is an analogue of 1.1 for $r r^{\prime}$-rooted $K_{2, t}$ minors, but it needs a little care to formulate. In particular, if there is a cut $\left(A_{1}, A_{2}, C\right)$ with $|C| \leq 1$ and $r, r^{\prime} \in A_{1} \cup C$, then G contains an $r r^{\prime}$-rooted $K_{2, t}$ minor if and only if $G \mid\left(A_{1} \cup C\right)$ contains such a minor, and therefore the number of edges within $A_{2} \cup C$ is irrelevant. Let us say that G is 2 -connected to $r r^{\prime}$ if there is no cut $\left(A_{1}, A_{2}, C\right)$ with $|C| \leq 1$ and $r, r^{\prime} \in A_{1} \cup C$. For $t \geq 2$, define $\delta(t)=\frac{1}{2}\left(t+3-\frac{4}{t+2}\right)$. We shall prove the following.
7.1 Let $t \geq 2$, let G be a graph with n vertices, let $r, r^{\prime} \in V(G)$ be distinct, and let G be 2 -connected to r, r^{\prime}. If G contains no rr $^{\prime}$-rooted $K_{2, t}$ minor then

$$
|E(G)| \leq \delta(t)(n-1)-1 ;
$$

and for all $t \geq 2$ there are infinitely many such G that attain equality.

The proof requires several steps. First let us see the last claim, that there are infinitely many such graphs G that attain equality. Let $k \geq 1$ be an integer, and let $p_{1} \cdots-p_{k}$ be a path. Add a new vertex p_{0} adjacent to each of p_{1}, \ldots, p_{k}. For $1 \leq i \leq k$, take a set X_{i} of $t+1$ new vertices, and choose distinct $x_{i}, x_{i}^{\prime} \in X_{i}$; and make every two vertices in $X_{i} \cup\left\{p_{i-1}, p_{i}\right\}$ adjacent except for the pairs $p_{i-1} x_{i}, x_{i} x_{i}^{\prime}$ and $x_{i}^{\prime} p_{i}$. This graph G has n vertices, where $n=k(t+2)+1$, and has

$$
\left(\frac{1}{2}(t+2)(t+3)-2\right) k-1=\delta(t)(n-1)-1
$$

edges. Moreover, it has no $p_{0} p_{k}$-rooted $K_{2, t}$ minor (we leave the reader to check this, but here is a hint: the edge $p_{0} p_{k}$ is useless and can be deleted, and then p_{k-1} is a cutvertex.) This proves the last claim of the theorem.

The remainder of this section is devoted to proving the first claim. Suppose it is false; then there is a smallest graph G that is a counterexample (for some t). Moreover, if G is such a graph, and r, r^{\prime} are nonadjacent in G, then we may add the edge $r r^{\prime}$ and delete some other edge, and the graph we produce is another counterexample. Thus it suffices to prove that there is no "minimum counterexample", where we say a 5 -tuple $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample if it has the following properties:

- G is a graph with n vertices, and $t \geq 2$
- $r, r^{\prime} \in V(G)$ are distinct and adjacent, G is 2-connected to $r r^{\prime}$, and G contains no $r r^{\prime}$-rooted $K_{2, t}$ minor
- $|E(G)|>\delta(t)(n-1)-1$
- For all t^{\prime} with $2 \leq t^{\prime}$, and for every graph G^{\prime}, and all distinct $s, s^{\prime} \in V\left(G^{\prime}\right)$, if G^{\prime} is 2-connected to $s s^{\prime}$ and G^{\prime} contains no $s s^{\prime}$-rooted $K_{2, t^{\prime}}$ minor, and $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, then

$$
\left|E\left(G^{\prime}\right)\right| \leq \delta\left(t^{\prime}\right)\left(\left|V\left(G^{\prime}\right)\right|-1\right)-1
$$

We proceed to prove several statements about minimum counterexamples, that eventually will lead to a contradiction and thereby complete the proof of 7.1. The first is:
7.2 If $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample then $n \geq t+3$.

Proof. Suppose that $n \leq t+2$. Since $\delta(t) \geq t / 2+1$, we have $|E(G)|>(t / 2+1)(n-1)-1$. In particular, $|E(G)| \geq 2$, since $n, t \geq 2$, and therefore $n \geq 3$. Let $|E(G)|=n(n-1) / 2-x$ say, where $x \geq 0$ is an integer. Then

$$
n(n-1) / 2-x>(t / 2+1)(n-1)-1,
$$

that is,

$$
(t+2-n)(n-1) / 2+x<1
$$

and since $n-1 \geq 2$ and $t+2-n, x \geq 0$, we deduce that $x=0$ and $n=t+2$. Consequently G is isomorphic to the complete graph K_{t+2}, and therefore has an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. This proves 7.2.

A notational convention: when we produce a minor H of G by contracting some edges, naming the vertices of H is sometimes a little awkward. Some of them may correspond to single vertices of G, in which case it is natural to give them the same name as that vertex of G, but some may be formed by identifying several vertices of G. In our case, when we have two distinguished vertices r, r^{\prime}, we adopt the convention that if a vertex of H is formed by identifying r with other vertices of G, we give this vertex the name r (and the same for r^{\prime}, and we will be careful not to identify r and r^{\prime} under contraction).

Let H be a graph, and let u, v be distinct vertices of H. Let H^{\prime} be the graph obtained from H by adding the edge $u v$ if u, v are nonadjacent in H, and otherwise $H^{\prime}=H$. We say that H^{\prime} is obtained from H by adding $u v$.
7.3 If $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample then there is no 2-cut $\left(A_{1}, A_{2}, C\right)$ with $r, r^{\prime} \in A_{1} \cup C$.

Proof. Suppose that there is, and choose it with A_{2} maximal, and let $C=\left\{c, c^{\prime}\right\}$. For $i=1,2$, let $n_{i}=\left|A_{i}\right|$ and let e_{i} be the number of edges of G with at least one end in A_{i}.

Suppose first that $C=\left\{r, r^{\prime}\right\}$. Since $A_{1} \neq \emptyset$, and the graph $G \mid\left(A_{1} \cup C\right)$ therefore has an $r r^{\prime}$-rooted $K_{2,1}$ minor, it follows that $G \mid\left(A_{2} \cup C\right)$ has no $r r^{\prime}$-rooted $K_{2, t-1}$ minor (and so $t \geq 3$). The minimality of $\left(G, t, r, r^{\prime}, n\right)$ (applied to $\left.G \mid\left(A_{2} \cup C\right)\right)$ implies that $e_{2}+1 \leq \delta(t-1)\left(n_{2}+1\right)-1$. A similar inequality holds for e_{1}, n_{1}, and adding the two gives

$$
e_{1}+e_{2}+2 \leq \delta(t-1)\left(n_{1}+n_{2}+2\right)-2
$$

But $e_{1}+e_{2}+1=|E(G)|>\delta(t)(n-1)-1$, and $n_{1}+n_{2}+2=n$, and so $\delta(t-1) n-2>\delta(t)(n-1)$. Since $\delta(t) \geq \delta(t-1)+\frac{1}{2}$, it follows that $\left(\delta(t)-\frac{1}{2}\right) n-2>\delta(t)(n-1)$, that is, $n+4<2 \delta(t)$. Thus

$$
\frac{1}{2} n(n-1) \geq|E(G)|>\delta(t)(n-1)-1>\frac{1}{2}(n+4)(n-1)-1
$$

and so $n \leq 1$, a contradiction. This proves that $C \neq\left\{r, r^{\prime}\right\}$.
Let $y=1$ if c, c^{\prime} are adjacent, and $y=0$ otherwise. We claim that $n_{2} \geq 3$. For let F be the graph obtained from $G \mid\left(A_{1} \cup C\right)$ by adding $c c^{\prime}$. Then $|E(F)|=e_{1}+1$; but F is 2 connected to $r r^{\prime}$, and F has no $r r^{\prime}$-rooted $K_{2, t}$ minor, so from the minimality of (G, t, r, r^{\prime}, n), $e_{1}+1 \leq \delta(t)\left(n_{1}+1\right)-1$. But

$$
e_{1}+e_{2}+y=|E(G)|>\delta(t)\left(n_{1}+n_{2}+1\right)-1,
$$

and subtracting yields $e_{2}+y-1>\delta(t) n_{2}$. Since $y \leq 1$, we deduce that $e_{2}>\delta(t) n_{2}$. In particular, since $\delta(t) \geq 2$ and $n_{2} \geq 1$, it follows that $e_{2} \geq 3$, and so $n_{2} \geq 2$. Suppose that $n_{2}=2$. Then $e_{2} \leq 5$, and yet $e_{2}>2 \delta(t)$, and so $5>2 \delta(t)$, that is, $t=2$, and $e_{2}=5$. In particular both members of A_{2} are adjacent to both members of C; but then G has an $r r^{\prime}$-rooted $K_{2, t}$ minor, by choosing two disjoint paths between $\left\{r, r^{\prime}\right\}$ and C and contracting their edges, a contradiction. This proves that $n_{2} \geq 3$.

Let X be the set of vertices in A_{1} adjacent to both c, c^{\prime}. Since G is 2 -connected to $r r^{\prime}$, there are two disjoint paths P_{1}, P_{2} of $G \mid\left(A_{1} \cup C\right)$ between $\left\{r, r^{\prime}\right\}$ and $\left\{c, c^{\prime}\right\}$; choose them to
contain as few members of X as possible. Let there be x vertices in X that do not belong to $P_{1} \cup P_{2}$. Let H be the graph obtained from $G \mid\left(A_{2} \cup C\right)$ by adding $c c^{\prime}$. Then H has no $c c^{\prime}$-rooted $K_{2, t-x}$ minor (for otherwise we could contract the edges of P_{1}, P_{2} and obtain an $r r^{\prime}$-rooted $K_{2, t}$ minor in G). In particular, since $A_{2} \neq \emptyset$ and H therefore has a $c c^{\prime}$-rooted $K_{2,1}$ minor, it follows that $t-x \geq 2$. Since H is 2-connected to $c c^{\prime}$, and $|E(H)|=e_{2}+1$, the minimality of (G, t, r, r^{\prime}, n) implies that

$$
e_{2} \leq \delta(t-x)\left(n_{2}+1\right)-2
$$

Let $e_{2}=\delta(t-x)\left(n_{2}+1\right)-2-z$ say, where $z \geq 0$. Let J be the graph obtained from G by deleting all edges between X and c, and then contracting all edges within $A_{2} \cup C$ (note that this graph has no parallel edges, since we deleted the edges between X and c). The maximality of A_{2} implies that J is 2 -connected to r, r^{\prime}. (We use here that not both r, r^{\prime} belong to C.) Since $|E(J)|=e_{1}-|X|$ and $|V(J)|=n_{1}+1$, the minimality of (G, t, r, r^{\prime}, n) implies that $e_{1}-|X| \leq \delta(t) n_{1}-1$. Summing these two inequalities yields

$$
e_{1}+e_{2}-|X| \leq \delta(t) n_{1}+\delta(t-x)\left(n_{2}+1\right)-3-z
$$

Since $e_{1}+e_{2}+y=|E(G)|>\delta(t)(n-1)-1$, it follows that

$$
\delta(t) n_{1}+\delta(t-x)\left(n_{2}+1\right)-3-z>\delta(t)(n-1)-1-y-|X|
$$

that is,

$$
|X|+y-z>(\delta(t)-\delta(t-x))\left(n_{2}+1\right)+2
$$

Since $y \leq 1$ and $\delta(t)-\delta(t-x) \geq x / 2$, we deduce that $|X|-z>x\left(n_{2}+1\right) / 2+1$, and in particular $|X|-z>2 x+1$ since $n_{2} \geq 3$. Since $|X| \leq x+2$, it follows that $x=0$ and $|X|=2$ and $z<1$.

We deduce that P_{1}, P_{2} both contain members of X, and therefore $r, r^{\prime} \notin C$. Let $X=$ $\left\{x_{1}, x_{2}\right\}$ where $x_{i} \in V\left(P_{i}\right)$ for $i=1,2$. We may assume that $r \in V\left(P_{1}\right)$ and $r^{\prime} \in V\left(P_{2}\right)$; for $i=1,2$ let Q_{i} be the maximal subpath of P_{i} disjoint from $C \cup X$. Suppose first that $\left\{r, r^{\prime}\right\} \neq\left\{x_{1}, x_{2}\right\}$. From the maximality of A_{2}, there is a path of $G \mid\left(A_{1} \cup C\right)$ between C and $\left\{r, r^{\prime}\right\}$ with no vertex in X. Consequently there is a path of $G \mid\left(A_{1} \cup C\right)$ between C and $V\left(Q_{1} \cup Q_{2}\right)$ with no vertex in X. Choose a minimal such path Q, say between c and $V\left(Q_{1}\right)$. Then in $Q_{1} \cup Q$ there is a path P_{1}^{\prime} between c and r, containing no vertex of X and disjoint from $V\left(P_{2}\right) \backslash\{c\}$; and in $G \mid\left(V\left(Q_{2}\right) \cup\left\{x_{2}, c^{\prime}\right\}\right)$ there is a path P_{2}^{\prime} between c^{\prime} and r^{\prime}, disjoint from P_{1}^{\prime}. But this contradicts the choice of P_{1}, P_{2}.

We deduce that $\left\{r, r^{\prime}\right\}=\left\{x_{1}, x_{2}\right\}$. Since G has an $r r^{\prime}$-rooted $K_{2,2}$ minor (indeed, subgraph), it follows that $t \geq 3$. Suppose that $A_{1}=\left\{r, r^{\prime}\right\}$. Then $e_{1}=5$, and we recall that $e_{2} \leq \delta(t)\left(n_{2}+1\right)-2$ (since $x=0$), and so $|E(G)| \leq \delta(t)\left(n_{2}+1\right)+4$; and since $|E(G)|>\delta(t)(n-1)-1$ and $n=n_{2}+4$, we deduce that

$$
\delta(t)\left(n_{2}+1\right)+4>\delta(t)\left(n_{2}+3\right)-1
$$

that is, $5>2 \delta(t)$, which is impossible since $t \geq 3$. Thus $n_{1}>2$. From the maximality of A_{2}, there is therefore a path Q with nonnull interior between X and C, with interior in $A_{1} \backslash X$. Let Q be $c-q_{1}-\cdots-q_{k}-r^{\prime}$ say. By contracting the edges $c x_{1}, c^{\prime} x_{2}$, and all the edges of the path $q_{1}-\cdots-q_{k}$, we deduce that the graph H (defined earlier) has no $c c^{\prime}$-rooted $K_{2, t-1}$ minor; and so $e_{2}+1 \leq \delta(t-1)\left(n_{2}+1\right)-1$. But $e_{2}>\delta(t)\left(n_{2}+1\right)-3$ since $z<1$, and so

$$
\delta(t-1)\left(n_{2}+1\right)-2>\delta(t)\left(n_{2}+1\right)-3
$$

that is, $1>(\delta(t)-\delta(t-1))\left(n_{2}+1\right)$, and since $\delta(t)-\delta(t-1) \geq 1 / 2$, this is impossible. This proves 7.3.
7.4 If $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample and $u, v \in V(G)$ are adjacent and $\{u, v\} \neq$ $\left\{r, r^{\prime}\right\}$ then $|X(u v)| \geq \frac{1}{2}(t+1)$. Moreover, if $u, v, w, x \in V(G)$ are pairwise adjacent, and $\{u, v\},\{w, x\} \neq\left\{r, r^{\prime}\right\}$, then $|X(u v)|+|X(w x)| \geq t+2$.

Proof. Let G^{\prime} be obtained from G by deleting all edges between u and $X(u v)$, and then contracting the edge $u v$. From 7.3 it follows that G^{\prime} is 2 -connected to $r r^{\prime}$; and since G^{\prime} has no $r r^{\prime}$-rooted $K_{2, t}$ minor, the minimality of $\left(G, t, r, r^{\prime}, n\right)$ implies that $\left|E\left(G^{\prime}\right)\right| \leq \delta(t)(n-2)-1$. But $|E(G)|>\delta(t)(n-1)-1$, and $|E(G)|-\left|E\left(G^{\prime}\right)\right|=|X(u v)|+1$, and so

$$
|X(u v)|+1>\delta(t)=\frac{1}{2}(t+3-4 /(t+2))
$$

Hence $|X(u v)|+1 \geq \frac{1}{2}(t+3)$, that is, $|X(u v)| \geq \frac{1}{2}(t+1)$. This proves the first assertion.
For the second, let $u, v, w, x \in V(G)$ be pairwise adjacent, and let $G^{\prime \prime}$ be obtained from G by deleting all edges between u and $X(u v)$, and between w and $X(w x)$, and then contracting the edges $u v$ and $w x$. From $7.3, G^{\prime \prime}$ is 2 -connected to $r r^{\prime}$, and so the minimality of $\left(G, t, r, r^{\prime}, n\right)$ implies that $\left|E\left(G^{\prime \prime}\right)\right| \leq \delta(t)(n-3)-1$. But $|E(G)|-\left|E\left(G^{\prime \prime}\right)\right|=|X(u v)|+|X(w x)|+1$ (since the edge $u w$ is both between u and $X(u v)$ and between w and $X(w x)$); consequently

$$
|X(u v)|+|X(w x)|+1>2 \delta(t) \geq t+2
$$

and so $|X(u v)|+|X(w x)| \geq t+2$. This proves 7.4.
7.5 If $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample, then there are two paths P_{1}, P_{2} between r, r^{\prime}, both with nonempty interior, and disjoint except for their ends. Consequently $t \geq 3$.

Proof. Suppose not. Let G^{\prime} be the graph obtained from G by deleting the edge $r r^{\prime}$. By Menger's theorem there is a cut $\left(A_{1}, A_{2}, C\right)$ of G^{\prime} with $r \in A_{1}$ and $r^{\prime} \in A_{2}$, and with $|C| \leq 1$. By 7.3, $\left(A_{1}, A_{2} \backslash\left\{r^{\prime}\right\}, C \cup\left\{r^{\prime}\right\}\right)$ is not a cut of G, since $r, r^{\prime} \in A_{1} \cup C \cup\left\{r^{\prime}\right\}$; and so $A_{2}=\left\{r^{\prime}\right\}$. Similarly $A_{1}=\{r\}$, and so $|V(G)| \leq 3$, and yet $|E(G)|>\delta(t)(n-1)-1 \geq 2 n-3$ which is impossible. This proves 7.5.
7.6 If $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample, then $X\left(r r^{\prime}\right) \neq \emptyset$.

Proof. Suppose that $X\left(r r^{\prime}\right)=\emptyset$. Let P_{1}, P_{2} be as in 7.5. We cannot choose P_{1}, P_{2} to be induced paths, since r, r^{\prime} are adjacent; but we can choose them induced except for the edge $r r^{\prime}$. More precisely, we may choose P_{1}, P_{2} such that for $i=1,2$, every pair of vertices of P_{i} that are adjacent in G are also adjacent in P_{i}, except for the pair $r r^{\prime}$. If P_{1}, P_{2} are chosen in this way we say the pair P_{1}, P_{2} is 1-optimal. We say the pair is 2-optimal if $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|$ is minimized over all pairs satisfying 7.5. (Thus every 2 -optimal pair is also 1 -optimal.)

Below, we prove several statements about a 1-optimal pair P_{1}, P_{2}. For $i=1,2$, let p_{i} be the neighbour of r in P_{i}, and let p_{i}^{\prime} be the neighbour of r^{\prime} in P_{i}.
(1) t is odd, and for every 1-optimal pair P_{1}, P_{2}, with $p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}$ defined as above, it follows that p_{1}, p_{2} are adjacent, and $p_{1}^{\prime}, p_{2}^{\prime}$ are adjacent, and the edges $r p_{1}, r p_{2}, r^{\prime} p_{1}^{\prime}, r^{\prime} p_{2}^{\prime}$ are each in exactly $(t+1) / 2$ triangles.

For by contracting all edges of P_{1} except $r p_{1}$, and all edges of P_{2} except $r^{\prime} p_{2}^{\prime}$, we do not produce an $r r^{\prime}$-rooted $K_{2, t}$ minor, and so there are at most $t-1$ vertices not in $V\left(P_{1} \cup P_{2}\right)$ that are either $r p_{1}$-joins or $r^{\prime} p_{2}^{\prime}$-joins. Now there are at least $(t+1) / 2 r p_{1}$-joins, and at most one of them is in $V\left(P_{1} \cup P_{2}\right)$ (namely p_{2}, and only if p_{1}, p_{2} are adjacent; here we use that $\left.p_{1} \notin X\left(r r^{\prime}\right)\right)$, so at least $(t-1) / 2$ are not in $V\left(P_{1} \cup P_{2}\right)$. Similarly there are at least $(t-1) / 2$ $r^{\prime} p_{2}^{\prime}$-joins that are not in $V\left(P_{1} \cup P_{2}\right)$. But no $r p_{1}$-join is also an $r^{\prime} p_{2}^{\prime}$-join, since $X\left(r r^{\prime}\right)=\emptyset$; and so we have equality throughout. In particular, t is odd, and p_{1}, p_{2} are adjacent, and so are $p_{1}^{\prime}, p_{2}^{\prime}$. This proves (1).
(2) If P_{1}, P_{2} is a 1-optimal pair, then P_{1}, P_{2} both have at least four edges.

Since $X\left(r r^{\prime}\right)=\emptyset$, it follows that P_{1}, P_{2} both have at least three edges; suppose that P_{1} has exactly three, and its vertices are $r-p_{1}-p_{1}^{\prime}-r^{\prime}$ in order. Let G^{\prime} be the graph obtained from G by deleting p_{1}^{\prime} and deleting all edges between p_{1} and $X\left(r p_{1}\right)$, and then contracting $r p_{1}$. Since t is odd and $\left|X\left(r p_{1}\right)\right|=(t+1) / 2$ by (1), it follows that

$$
\left|E\left(G^{\prime}\right)\right|=|E(G)|-(t+3) / 2-\operatorname{deg}\left(p^{\prime}\right)>\delta(t)(n-1)-(t+5) / 2-\operatorname{deg}\left(p_{1}^{\prime}\right)
$$

We claim that G^{\prime} is 2-connected to $r r^{\prime}$. For suppose not; then there is a component C of $V(G) \backslash V\left(P_{1} \cup P_{2}\right)$ such that no vertex of $P_{1} \cup P_{2}$ has a neighbour in C except possibly r, p_{1}, p_{1}^{\prime}. By 7.3, both r and p_{1}^{\prime} have neighbours in C. Consequently there is a path Q between r, r^{\prime}, with interior in $\left(V\left(P_{1} \backslash p_{1}\right) \cup V(C)\right.$, induced except for the edge $r r^{\prime}$. Then Q, P_{2} form a 1-optimal pair, and the neighbours of r in P_{2}, Q are nonadjacent, contrary to (1). This proves that G^{\prime} is 2-connected to $r r^{\prime}$. Now G^{\prime} contains no $r r^{\prime}$-rooted $K_{2, t-1}$ minor; and so from the minimality of $\left(G, t, r, r^{\prime}, n\right)$, we deduce that $\left|E\left(G^{\prime}\right)\right| \leq \delta(t-1)(n-3)-1$, and so

$$
\delta(t)(n-1)-(t+5) / 2-\operatorname{deg}\left(p_{1}^{\prime}\right)<\delta(t-1)(n-3)-1,
$$

that is,

$$
2 \operatorname{deg}\left(p_{1}^{\prime}\right)>n+t+4 \frac{n-5-2 t}{(t+1)(t+2)} .
$$

Since $n \geq t+3$, it follows that

$$
4 \frac{n-5-2 t}{(t+1)(t+2)} \geq-4 /(t+1) \geq-1
$$

and so $2 \operatorname{deg}\left(p_{1}^{\prime}\right) \geq n+t$. The same holds for $\operatorname{deg}\left(p_{1}\right)$, and so $\operatorname{deg}\left(p_{1}\right)+\operatorname{deg}\left(p_{1}^{\prime}\right) \geq n+t$. Consequently there are at least $t p_{1} p_{1}^{\prime}$-joins, and they all belong to $V(G) \backslash V\left(P_{1}\right)$, so contracting the edges $r p_{1}$ and $r^{\prime} p_{1}^{\prime}$ produces an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. This proves (2).
(3) If P_{1}, P_{2} is a 1-optimal pair, and C is a connected subgraph of $G \backslash V\left(P_{1} \cup P_{2}\right)$, and for $i=1,2$ some vertex of the interior of P_{i} has a neighbour in $V(C)$, then one of r, r^{\prime} has a neighbour in $V(C)$.

For suppose that r, r^{\prime} are anticomplete to $V(C)$. Define $p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}$ as before. At most one member of $X\left(r p_{1}\right)$ belongs to $V\left(P_{1} \cup P_{2}\right)$ (namely, $\left.p_{2}\right)$, since the pair P_{1}, P_{2} is 1-optimal, and none of them belong to $V(C)$ since r is anticomplete to $V(C)$. Thus by 7.4, at least $(t-1) / 2$ members of $X\left(r p_{1}\right)$ do not belong to $V\left(P_{1} \cup P_{2} \cup C\right)$. Similarly at least $(t-1) / 2$ members of $X\left(r^{\prime} p_{2}^{\prime}\right)$ do not belong to $V\left(P_{1} \cup P_{2} \cup C\right)$. Since $X\left(r r^{\prime}\right)=\emptyset$, and therefore $X\left(r p_{1}\right) \cap X\left(r^{\prime} p_{2}^{\prime}\right)=\emptyset$, we deduce that there are at least $t-1$ members of $X\left(r p_{1}\right) \cup X\left(r^{\prime} p_{2}^{\prime}\right)$ that do not belong to $V\left(P_{1} \cup P_{2} \cup C\right)$. Consequently contracting all edges of $P_{1} \cup P_{2}$ except $r p_{1}$ and $r^{\prime} p_{2}^{\prime}$ (and contracting some edges of C) produces an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. This proves (3).
(4) If P_{1}, P_{2} is a 2-optimal pair, then for every edge uv of P_{1}, some member of $X(u v)$ belongs to $V\left(P_{2}\right)$.

For suppose not. By (1) it follows that $u, v \neq r, r^{\prime}$. We may assume that r, u, v, r^{\prime} occur in this order in P_{1}. Since we do not produce an $r r^{\prime}$-rooted $K_{2, t}$ minor by contracting all edges of $P_{1} \cup P_{2}$ except $u v$ and $r p_{2}$, it follows that there are at most $t-1$ members of $X\left(r p_{2}\right) \cup X(u v)$ that do not belong to $V\left(P_{1} \cup P_{2}\right)$. Since $V\left(P_{1} \cup P_{2}\right)$ contains only one member of $X\left(r p_{2}\right)$, and no member of $X(u v), 7.4$ implies that there exists $w \in X\left(r p_{2}\right) \cap X(u v)$. Thus w is adjacent to both r, v, and does not belong to P_{2}. From the 2-optimality of the pair P_{1}, P_{2}, it follows that no path between r, r^{\prime} with nonempty interior in $V\left(P_{1} \cup\{w\}\right)$ has strictly fewer edges than P_{1}, and in particular r, u are adjacent. Similarly r^{\prime}, v are adjacent; but then P_{1} has only three edges, contrary to (2). This proves (4).
(5) If P_{1}, P_{2} is a 2-optimal pair, then P_{1}, P_{2} both have exactly four edges.

For by (2) they both have at least four edges; suppose that P_{1} has at least five, and choose
an edge $u v$ of P_{1} such that u, v are both nonadjacent to both of r, r^{\prime}. We may assume that r, u, v, r^{\prime} are in order in P_{1}. Suppose first that some $u v$-join w does not belong to $V\left(P_{2}\right)$. By 7.3, there is a path between w and $V\left(P_{1} \cup P_{2}\right)$ containing neither of u, v; and so there is a path $w=q_{0}-q_{1}-\cdots-q_{k}$ say, such that $q_{0}, \ldots, q_{k} \notin V\left(P_{1} \cup P_{2}\right)$, and q_{k} is adjacent to some $y \in V\left(P_{1} \cup P_{2}\right) \backslash\{u, v\}$. Choose such a path with k minimum. (Possibly $k=0$.) It follows that for $0 \leq i<k, q_{i}$ has no neighbour in $V\left(P_{1} \cup P_{2}\right) \backslash\{u, v\}$.

We claim that q_{k} has a neighbour in $V\left(P_{1}\right) \backslash\{u, v\}$, and we may therefore assume that $y \in V\left(P_{1}\right)$. For suppose not; then y belongs to the interior of P_{2}, and in particular r, r^{\prime} are nonadjacent to q_{k}. Hence r, r^{\prime} have no neighbours in $\left\{q_{0}, \ldots, q_{k}\right\}$, contrary to (3). This proves that we may choose $y \in V\left(P_{1}\right)$. From the symmetry we may assume that y belongs to the subpath of P_{1} between r and u.

Now there is a path with nonempty interior, between r, r^{\prime}, with interior contained in $\left(V\left(P_{1}\right) \backslash\{u\}\right) \cup\left\{q_{0}, \ldots, q_{k}\right\}$; choose such a path, P_{3} say, minimal. Thus the pair P_{3}, P_{2} is 1optimal. Some vertex of P_{3} does not belong to P_{1}, and so we may choose $i \leq k$ minimum such that $q_{i} \in V\left(P_{3}\right)$. Let C be the subgraph induced on $\left\{u, q_{0}, \ldots, q_{i-1}\right\}$. Thus C is connected, and disjoint from both P_{2}, P_{3}, and r, r^{\prime} both have no neighbours in C (since $q_{k} \notin V(C)$). Moreover, q_{i} belongs to the interior of P_{3}, and has a neighbour in $V(C)$; and by (4), some vertex of the interior of P_{2} is adjacent to u and therefore has a neighbour in $V(C)$. But this contradicts (3) applied to C and the 1-optimal pair P_{2}, P_{3}.

This proves that there is no such vertex w, and so every $u v$-join belongs to $V\left(P_{2}\right)$. Since P_{1}, P_{2} is 2-optimal, it follows that every two $u v$-joins in $V\left(P_{2}\right)$ are adjacent (for otherwise we could choose another pair of paths with smaller union), and in particular there are at most two $u v$-joins. By 7.4 there are at least $(t+1) / 2 u v$-joins, and so $t=3$, and there are exactly two $u v$-joins x, y say, and x, y are adjacent members of the interior of P_{2}. Thus u, v, x, y are pairwise adjacent, and so by the second statement of $7.4,|X(u v)|+|X(x y)| \geq t+2=5$. Since $|X(u v)|=2$, it follows that $|X(x y)| \geq 3$, and so there is an $x y$-join z different from u, v. But then contracting all edges of P_{2} except $x y$ gives an $r r^{\prime}$-rooted $K_{2,3}$ minor, a contradiction. This proves (5).

Now by 7.5 there is a 2-optimal pair P_{1}, P_{2}. By (5), P_{1} and P_{2} both have four edges; for $i=1,2$, let P_{i} have vertices $r-p_{i}-q_{i}-p_{i}^{\prime}-r^{\prime}$ in order.
(6) $\operatorname{deg}\left(q_{1}\right), \operatorname{deg}\left(q_{2}\right) \geq(n+t-2) / 2$.

For let G^{\prime} be obtained from G by deleting the edges between p_{1} and $X\left(r p_{1}\right)$, and between p_{1}^{\prime} and $x\left(r^{\prime} p_{1}^{\prime}\right)$, and deleting q_{1}, and contracting the edges $r p_{1}$ and $r^{\prime} p_{1}^{\prime}$. As in the proof of (2), it follows that G^{\prime} is 2 -connected to $r r^{\prime}$. Since G^{\prime} has no $r r^{\prime}$-rooted $K_{2, t-1}$ minor, the minimality of $\left(G, t, r, r^{\prime}, n\right)$ implies that $\left|E\left(G^{\prime}\right)\right| \leq \delta(t-1)(n-4)-1$. But

$$
\left|E\left(G^{\prime}\right)\right|=|E(G)|-\left|X\left(r p_{1}\right)\right|-\left|X\left(r^{\prime} p_{1}^{\prime}\right)\right|-2-\operatorname{deg}\left(q_{1}\right)
$$

and by (1) $\left|X\left(r p_{1}\right)\right|=\left|X\left(r^{\prime} p_{1}^{\prime}\right)\right|=(t+1) / 2$. Consequently

$$
|E(G)|-(t+1)-2-\operatorname{deg}\left(q_{1}\right) \leq \delta(t-1)(n-4)-1,
$$

that is, $|E(G)| \leq \delta(t-1)(n-4)+t+2+\operatorname{deg}\left(q_{1}\right)$. But $|E(G)|>\delta(t)(n-1)-1$, and therefore

$$
\delta(t)(n-1)-1<\delta(t-1)(n-4)+t+2+\operatorname{deg}\left(q_{1}\right)
$$

that is,

$$
n+t-1+4 \frac{n-3 t-7}{(t+2)(t+1)}<2 \operatorname{deg}\left(q_{1}\right)
$$

Since $n \geq t+3$, it follows that

$$
4 \frac{n-3 t-7}{(t+2)(t+1)} \geq-8 /(t+1) \geq-2
$$

and so $n+t-2 \leq 2 \operatorname{deg}\left(q_{1}\right)$. This proves (6).
There are at least $(t-1) / 2 r^{\prime} p_{2}^{\prime}$-joins that are not in $V\left(P_{1} \cup P_{2}\right)$, and at least $(t-1) / 2$ $r p_{1}$-joins with the same property. If all these $r p_{1}$-joins are adjacent to q_{1}, then (since p_{1} is adjacent to r, q_{1}) contracting the edges $q_{1} p_{1}^{\prime}, p_{1}^{\prime} r^{\prime}, r p_{2}, p_{2} q_{2}, q_{2} p_{2}^{\prime}$ yields an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. We deduce that some $r p_{1}$-join s_{1} say is not in $V\left(P_{1} \cup P_{2}\right)$ and is not adjacent to q_{1}. Similarly some $r^{\prime} p_{2}^{\prime}$-join s_{2} is not in $V\left(P_{1} \cup P_{2}\right)$ and is nonadjacent to q_{2}.

Let $X_{1}=X\left(q_{1} q_{2}\right) \backslash V\left(P_{1} \cup P_{2}\right)$, and $X_{2}=X\left(q_{1} q_{2}\right) \cap V\left(P_{1} \cup P_{2}\right)$. Let Z be the set of all vertices different from r, r^{\prime} that are nonadjacent to both q_{1}, q_{2} (with $q_{1}, q_{2} \in Z$ if q_{1}, q_{2} are nonadjacent). Let $A_{1}=\left\{r, p_{1}, q_{1}\right\}$ and $A_{2}=\left\{r^{\prime}, p_{2}^{\prime}, q_{2}\right\}$. Let B be the set of all vertices not in $V\left(P_{1} \cup P_{2}\right) \cup X_{1}$ with a neighbour in A_{1} and a neighbour in A_{2}. Since G does not contain an $r r^{\prime}$-rooted $K_{2, t}$ minor obtained by contracting the edges of $G \mid A_{1}$ and $G \mid A_{2}$, and since every vertex in $B \cup X_{1} \cup\left\{p_{1}^{\prime}, p_{2}\right\}$ has a neighbour in A_{1} and one in A_{2}, it follows that $|B| \leq t-3-\left|X_{1}\right|$.

Now if s_{1} is nonadjacent to q_{2} then $s_{1} \in Z$, and if s_{1} is adjacent to q_{2} then $s_{1} \in B$, and similarly s_{2} belongs to one of Z, B_{1}. Since $s_{1} \neq s_{2}$, we deduce that $|B|+|Z| \geq 2$, and therefore $2-|Z| \leq t-3-\left|X_{1}\right|$, that is, $\left|X_{1}\right| \leq|Z|+t-5$. Since $X_{2} \subseteq\left\{p_{1}, p_{1}^{\prime}, p_{2}, p_{2}^{\prime}\right\}$ and therefore $\left|X_{2}\right| \leq 4$, it follows that $\left|X\left(q_{1} q_{2}\right)\right|=\left|X_{1}\right|+\left|X_{2}\right| \leq|Z|+t-1$. But

$$
\left|X\left(q_{1} q_{2}\right)\right|+(n-|Z|-2)=\operatorname{deg}\left(q_{1}\right)+\operatorname{deg}\left(q_{2}\right)
$$

and so $\operatorname{deg}\left(q_{1}\right)+\operatorname{deg}\left(q_{2}\right) \leq n+t-3$, contrary to (6). This proves 7.6.
7.7 If $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample, then there is exactly one $r r^{\prime}$-join x, and $\operatorname{deg}(x)>\delta(t)+(\delta(t)-\delta(t-1))(n-2)$.

Proof. By 7.6 there is an $r r^{\prime}$-join x. We prove first that $\operatorname{deg}(x)>\delta(t)+(\delta(t)-\delta(t-1))(n-2)$. For let G^{\prime} be obtained from G by deleting x. By $7.3, G^{\prime}$ is 2 -connected to $r r^{\prime}$, and has no $r r^{\prime}$-rooted $K_{2, t-1}$ minor (for otherwise this could be extended to an $r r^{\prime}$-rooted $K_{2, t}$ minor in G, using x). From the minimality of $\left(G, t, r, r^{\prime}, n\right),\left|E\left(G^{\prime}\right)\right| \leq \delta(t-1)(n-2)-1$. But $|E(G)|>$
$\delta(t)(n-1)-1$, and $|E(G)|-\left|E\left(G^{\prime}\right)\right|=\operatorname{deg}(v)$, and so $\operatorname{deg}(x)>\delta(t)(n-1)-\delta(t-1)(n-2)$. This proves the claim.

Now suppose that y is another $r r^{\prime}$-join. If there are t vertices different from x, y, r, r^{\prime} and adjacent to both x, y, then contracting the edges $r x, r^{\prime} y$ gives an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. Thus there are at most $t-1$ such vertices, and hence $\operatorname{deg}(x)+\operatorname{deg}(y) \leq 6+(n-$ $4)+(t-1)=n+t+1$. But we have seen that $\operatorname{deg}(x), \operatorname{deg}(y)>\delta(t)+(\delta(t)-\delta(t-1))(n-2)$, and so $2 \delta(t)+2(\delta(t)-\delta(t-1))(n-2)<n+t+1$, which on substituting the expressions for $\delta(t)$ and $\delta(t-1)$ simplifies down to $n<t+3$, a contradiction. This proves 7.7.

In view of 7.7, it remains to handle the case when $\left|X\left(r r^{\prime}\right)\right|=1$. This will take several more lemmas, but first let us set up some notation. In what follows in this section, $\left(G, t, r, r^{\prime}, n\right)$ is a minimum counterexample; there is a unique $r r^{\prime}$-join x; and N, N^{\prime} are the sets of vertices in $V(G) \backslash\left\{x, r, r^{\prime}\right\}$ adjacent to r, r^{\prime} respectively. (Since $X\left(r r^{\prime}\right)=\{x\}$, it follows that $N \cap N^{\prime}=\emptyset$.) Let $W=V(G) \backslash\left(N \cup N^{\prime} \cup\left\{x, r, r^{\prime}\right\}\right)$. We fix $p \in N$ and $p^{\prime} \in N^{\prime}$ and a path P, such that P is between p, p^{\prime} and its interior is a subset of W. (This is possible by 7.5.) We partition $N \backslash\{p\}$ into four sets A, B, C, D as follows. A vertex in $N \backslash\{p\}$ belongs to $A \cup C$ if and only if it is adjacent to p, and it belongs to $B \cup C$ if and only if it is adjacent to x. (Thus, A is the set of vertices in $N \backslash\{p\}$ adjacent to p and not to x, and so on.) We define $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ similarly with r, r^{\prime} exchanged. Let $e=1$ if x, p are adjacent, and $e=0$ otherwise; and let $e^{\prime}=1$ if x, p^{\prime} are adjacent, and $e^{\prime}=0$ otherwise.
7.8 The following inequalities hold:

$$
\begin{gathered}
|A|+|C|+\left|B^{\prime}\right|+\left|C^{\prime}\right| \leq t-1 ; \\
\left|A^{\prime}\right|+\left|C^{\prime}\right|+|B|+|C| \leq t-1 ; \\
(t+1) / 2-e \leq|A|+|C| \leq(t-1) / 2+e^{\prime} ; \\
(t+1) / 2-e^{\prime} \leq\left|A^{\prime}\right|+\left|C^{\prime}\right| \leq(t-1) / 2+e ; \\
(t-1) / 2-e \leq|B|+|C| \leq(t-3) / 2+e^{\prime} ; \\
(t-1) / 2-e^{\prime} \leq\left|B^{\prime}\right|+\left|C^{\prime}\right| \leq(t-3) / 2+e .
\end{gathered}
$$

Proof. Since contracting $r x, r^{\prime} p^{\prime}$ and all edges of P does not produce an $r r^{\prime}$-rooted $K_{2, t}$ minor, the first statement holds, and the second follows by exchanging r, r^{\prime}. The four remaining lower bounds are consequences of 7.4 applied to the edges $r p, r^{\prime} p^{\prime}, r x, r^{\prime} x$; and the upper bounds follow from these and the first two statements. This proves 7.8.
7.9 If $a \in A$ has no neighbour in N^{\prime}, then there is an integer $h \geq(t+1) / 2$ and disjoint subsets $X_{1}, X_{2}, \ldots, X_{h}, Y_{1}, Y_{2} \subseteq V(G) \backslash\left(N^{\prime} \cup\left\{r^{\prime}, x\right\}\right)$, satisfying:

- each of $X_{1}, \ldots, X_{h}, Y_{1}, Y_{2}$ induces a connected subgraph of G
- $r \in Y_{1}, p \in Y_{2}$
- for $1 \leq i \leq h$ there is an edge of G between X_{i} and Y_{1}, and an edge of G between X_{i} and Y_{2}, and
- every vertex of each of $X_{1}, \ldots, X_{h}, Y_{1}, Y_{2}$ either belongs to $N \cup\{r\}$ or is adjacent to a.

Proof. If $|A \cup C| \geq(t+1) / 2$, we may take $h=|A \cup C|$, and let X_{1}, \ldots, X_{h} be the singleton subsets of $A \cup C$, and $Y_{1}=\{r\}$ and $Y_{2}=\{p\}$. Thus we may assume that $|A \cup C| \leq t / 2$. By 7.8, $|A \cup C| \geq(t+1) / 2-e$, and so $e=1$ (that is, x, p are adjacent) and $|A \cup C| \geq(t-1) / 2$. Let $h=|A \cup C|+1$, and for $3 \leq i \leq h$ let X_{i} be a singleton subset of $C \cup(A \backslash\{a\})$. It remains to select X_{1}, X_{2}, Y_{1} and Y_{2}, and we do this as follows. If a has two neighbours $w_{1}, w_{2} \in B \cup D$, we may take $X_{1}=\left\{w_{1}\right\}, X_{2}=\left\{w_{2}\right\}, Y_{1}=\{r\}$, and $Y_{2}=\{p, a\}$. Thus we may assume that a has at most one neighbour in $B \cup D$. Now $|X(a r)| \geq(t+1) / 2$ by 7.4 , and since $|A \cup C| \leq t / 2$, it follows that a has a unique neighbour in $B \cup D$, say u_{1}. Choose a sequence u_{1}, \ldots, u_{k} of distinct vertices, maximal with the following properties (where $u_{0}=r$):

- $u_{2}, \ldots, u_{k} \in W$,
- $u_{1} \cdots \cdots-u_{k}$ is a path, and a is adjacent to all of u_{1}, \ldots, u_{k}
- p is nonadjacent to all of u_{1}, \ldots, u_{k}, and
- for $1 \leq i \leq k-1, X\left(a u_{i}\right) \subseteq\left\{u_{i-1}, u_{i+1}\right\} \cup A \cup C$.

Now $\left|X\left(a u_{k}\right)\right| \geq(t+1) / 2$ by 7.4. Since $|A \cup C| \leq t / 2$, it follows that there is a vertex $u_{k+1} \notin A \cup C \cup\left\{u_{k-1}, u_{k}\right\}$ such that a, u_{k}, u_{k+1} are pairwise adjacent. Since u_{k} is nonadjacent to p, and a is nonadjacent to x and has no neighbour in $N^{\prime} \cup\left\{r^{\prime}\right\}$, it follows that $u_{k+1} \notin$ $N^{\prime} \cup\left\{r^{\prime}, x\right\}$. Suppose that $u_{k+1} \in\left\{u_{0}, \ldots, u_{k}\right\}$, and let $u_{k+1}=u_{i}$ where $0 \leq i \leq k$. Then $i \leq k-2$ (since $u_{k+1} \neq u_{k-1}, u_{k}$), and so $k \geq 2$ and therefore $u_{k} \notin N$, and so $i>0$. Consequently $X\left(a u_{i}\right) \subseteq\left\{u_{i-1}, u_{i+1}\right\} \cup A \cup C$, which is impossible since $u_{k} \in X\left(a u_{i}\right)$. Thus $u_{k+1} \neq u_{0}, \ldots, u_{k}$. Since $u_{k+1} \neq u_{1}$, and u_{1} is the unique neighbour of a in $B \cup D$, it follows that $u_{k+1} \notin B \cup D$, and so $u_{k} \notin N$. From the maximality of the sequence u_{1}, \ldots, u_{k}, we deduce that either p is adjacent to u_{k+1}, or $X\left(a u_{k}\right) \nsubseteq\left\{u_{k-1}, u_{k+1}\right\} \cup A \cup C$. In the first case, we may take $X_{1}=\{a\}, X_{2}=\left\{u_{1}, \ldots, u_{k}, u_{k+1}\right\}, Y_{1}=\{r\}$, and $Y_{2}=\{p\}$. In the second case, let $w \in X\left(a u_{k}\right)$ with $w \notin\left\{u_{k-1}, u_{k+1}\right\} \cup A \cup C$; then we may take $X_{1}=\left\{u_{k+1}\right\}, X_{2}=\{w\}$, $Y_{1}=\left\{r, u_{1}, \ldots, u_{k}\right\}$ and $Y_{2}=\{p, a\}$. This proves 7.9.

$7.10 x$ is adjacent to both p, p^{\prime}.

Proof. For suppose there is some choice of P, p, p^{\prime} such that x is nonadjacent to one of p, p^{\prime}; and choose such P, p, p^{\prime} with P of minimum length. Let x, p^{\prime} be nonadjacent, say. By $7.8, x$ is adjacent to p, and $|A|+|C|=(t-1) / 2,\left|A^{\prime}\right|+\left|C^{\prime}\right|=(t+1) / 2,|B|+|C|=(t-3) / 2$, and $\left|B^{\prime}\right|+\left|C^{\prime}\right|=(t-1) / 2$. In particular, since $|A|+|C|>|B|+|C|$, it follows that $A \neq \emptyset$; choose
$a \in A$. It follows that a has no neighbour in P different from p, since otherwise we could choose a new path P^{\prime} between a and p^{\prime}, and this is impossible by 7.8 since x is nonadjacent to both a, p^{\prime}.

Suppose that $a \in A$ has no neighbour in N^{\prime}. Since $\left|X\left(x r^{\prime}\right)\right| \geq(t+1) / 2$ by 7.4, and $X\left(x r^{\prime}\right) \subseteq N^{\prime} \cup\{r\}$, there are at least $(t-1) / 2 x r^{\prime}$-joins in N^{\prime}, and none of them is in P. Moreover, since no vertex of P belongs to N or is adjacent to a except $p, 7.9$ implies that contracting $r x, p^{\prime} r^{\prime}$ and the edges of P (and the edges of the $h+2$ subgraphs given by 7.9) yields an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction.

Thus there exists $a^{\prime} \in N^{\prime}$ adjacent to a. Since a has no neighbour in P different from p, it follows that a, p^{\prime} are nonadjacent, and in particular $a^{\prime} \neq p^{\prime}$. The path $a-a^{\prime}$ satisfies our hypotheses for the choice of P, and so from the minimality of the length of P, we deduce that P has only one edge, and so p, p^{\prime} are adjacent. From $7.8, x$ is adjacent to a^{\prime}. Now $\left|A^{\prime} \cup C^{\prime}\right|=(t+1) / 2$ as we already saw, and so there are at least $(t-1) / 2$ vertices not in $\left\{x, r, r^{\prime}, p, p^{\prime}, a, a^{\prime}\right\}$ and adjacent to both p^{\prime}, r^{\prime}; and similarly there are at least $(t-1) / 2$ such vertices adjacent to both a, r. But then contracting the edges $r p, p p^{\prime}, a a^{\prime}, a^{\prime} r^{\prime}$ gives an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. This proves 7.10.

7.11 P has length at least two.

Proof. Suppose not; then p, p^{\prime} are adjacent. Suppose there is a 3 -cut ($L, M,\left\{r, p, p^{\prime}\right\}$), where $x, r^{\prime} \in M$. Then there is a path between r and p^{\prime} with interior in L, by 7.3 , and x has no neighbour in the interior of this path; and hence there is a choice of P, p, p^{\prime} that violates 7.10, a contradiction. Thus there is no such 3 -cut. Let G^{\prime} be the graph obtained from G by deleting all edges between p and $X(p r)$, deleting the vertex p^{\prime}, and contracting $p r$. It follows that G^{\prime} is 2 -connected to $r r^{\prime}$.

Now G^{\prime} has no $r r^{\prime}$-rooted $K_{2, t-1}$ minor, and so from the minimality of $\left(G, t, r, r^{\prime}, n\right)$, it follows that $\left|E\left(G^{\prime}\right)\right| \leq \delta(t-1)(n-3)-1$. But $|E(G)|-\left|E\left(G^{\prime}\right)\right|=\operatorname{deg}\left(p^{\prime}\right)+|A|+|C|+2$, and $|C| \leq|B|+|C| \leq(t-1) / 2$ by 7.8 , and so

$$
|E(G)| \leq \delta(t-1)(n-3)+\operatorname{deg}\left(p^{\prime}\right)+|A|+(t+1) / 2
$$

Since $|E(G)|>\delta(t)(n-1)-1$, we deduce that

$$
\delta(t)(n-1)-1<\delta(t-1)(n-3)+\operatorname{deg}\left(p^{\prime}\right)+|A|+(t+1) / 2
$$

and so

$$
\operatorname{deg}\left(p^{\prime}\right)>2 \delta(t)+(\delta(t)-\delta(t-1))(n-3)-|A|-(t+3) / 2
$$

But since contracting the edges $r x, p^{\prime} r^{\prime}$ does not produce an $r r^{\prime}$-rooted $K_{2, t}$ minor, it follows that x, p^{\prime} have at most $t-2$ common neighbours that are not in $V(P) \cup\left\{x, r, r^{\prime}\right\}$, and therefore at most t common neighbours in total. Since every vertex in A is nonadjacent to x (by definition) and to p^{\prime} (by 7.10), it follows that $\operatorname{deg}\left(p^{\prime}\right)+\operatorname{deg}(x) \leq n-|A|+t$. But from 7.7, $\operatorname{deg}(x)>\delta(t)+(\delta(t)-\delta(t-1))(n-2)$; and so
$2 \delta(t)+(\delta(t)-\delta(t-1))(n-3)-|A|-(t+3) / 2+\delta(t)+(\delta(t)-\delta(t-1))(n-2))<n-|A|+t$,
which simplifies to

$$
(t-3)(t+2)+8(n-t-3)<0
$$

a contradiction. This proves 7.11.

7.12 A, A^{\prime} are both nonempty.

Proof. Suppose that $A^{\prime}=\emptyset$, say. By 7.8, $\left|A^{\prime}\right|+\left|C^{\prime}\right| \geq(t-1) / 2$, and $\left|B^{\prime}\right|+\left|C^{\prime}\right| \leq(t-1) / 2$; so t is odd, $\left|C^{\prime}\right|=(t-1) / 2$, and $B^{\prime}=\emptyset$. If there exists $a \in A$, then (since a is anticomplete to $N^{\prime} \cup(V(P) \backslash\{p\})$ by 7.10), 7.9 implies that contracting the edges $r x, p^{\prime} r^{\prime}$ and all edges of P (and the edges of the subgraphs provided by 7.9) yields an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. Thus $A=\emptyset$, and so similarly $B=\emptyset$ and $|C|=(t-1) / 2$.

If every member of C has a neighbour in $V(P \backslash p)$, then we may obtain an $r r^{\prime}$-rooted $K_{2, t}$ minor by contracting $r x, r^{\prime} p^{\prime}$ and all edges of $P \backslash p$, a contradiction. Thus there exists $c \in C$ with no neighbour in $V(P \backslash p)$. Now $|X(r p)|=(t+1) / 2$, and since r, p, x, c are pairwise adjacent, 7.4 implies that $|X(c x)| \geq(t+3) / 2$. Hence there is a vertex $u_{1} \notin C \cup\{p, r\}$ and adjacent to c, x. Since $u_{1} \notin C$ and $B=\emptyset$, it follows that r, u_{1} are nonadjacent, and so $u_{1} \notin N$; and since N is anticomplete to N^{\prime} by 7.11 , it follows that $u_{1} \in W$. We claim that $X(c x) \subseteq C \cup\left\{p, r, u_{1}\right\}$; for if not, there is a second vertex u_{1}^{\prime} that satisfies the defining condition for u_{1}, and then contracting the edges $r x, r^{\prime} p^{\prime}, p c$ and all edges of P gives an $r r^{\prime}$ rooted $K_{2, t}$ minor, a contradiction. Let $u_{0}=x$, and choose a maximal sequence u_{1}, \ldots, u_{k} of distinct members of W with the following properties:

- $u_{1}-\cdots-u_{k}$ is a path, and c is adjacent to all of u_{1}, \ldots, u_{k}, and
- for $1 \leq i<k, X\left(c u_{i}\right) \subseteq C \cup\left\{u_{i-1}, u_{i+1}\right\}$.

Now by 7.4, $\left|X\left(c u_{k}\right)\right| \geq(t+1) / 2$, and so there exists a vertex $u_{k+1} \neq u_{k-1}, u_{k}$ such that $u_{k} \notin C$. If $u_{k+1} \in V(P)$, then contracting $r x, r^{\prime} p^{\prime}$, all edges of P, and the edges of the path $u_{2} \cdots-u_{k+1}$ gives an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. If $u_{k+1} \in D$, then contracting $r p, r^{\prime} x$, all edges of P, and the edges of the path $x-u_{1} \cdots-u_{k}$ gives an $r r^{\prime}$-rooted $K_{2, t}$ minor. Moreover, $u_{k+1} \notin N^{\prime}$, since c is anticomplete to N^{\prime}; and so $u_{k+1} \in W \cup\{x\}$. Suppose that $u_{k+1}=u_{i}$ for some $i \in\{0, \ldots, k\}$; then $i \leq k-2$, and so $k \geq 2$, and $u_{k} \in X\left(c u_{i}\right)$. But $X\left(c u_{0}\right) \subseteq C \cup\left\{p, r, u_{1}\right\}$, so $i \neq 0$; hence $X\left(c u_{i}\right) \subseteq C \cup\left\{u_{i-1}, u_{i+1}\right\}$, a contradiction. Thus $u_{k+1} \in W$ and is different from u_{0}, \ldots, u_{k}. From the maximality of the sequence u_{1}, \ldots, u_{k}, it follows that $X\left(c u_{k}\right) \nsubseteq C \cup\left\{u_{k-1}, u_{k+1}\right\}$, and so there is a vertex w adjacent to c, u_{k} and not in $C \cup\left\{u_{k-1}, u_{k+1}\right\}$. Thus w satisfies the defining conditions for u_{k+1}, and so by the same argument $w \in W$ and is different from u_{0}, \ldots, u_{k}. But then contracting $r x, r^{\prime} p^{\prime}, p c$, all edges of P, and all edges of the path $x-u_{1} \cdots-u_{k}$ gives an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. This proves 7.12.

Now we complete the proof of the second main result.
Proof of 7.1 We may assume that P is an induced path. Let q be the neighbour of p in P. By 7.12 , both A, A^{\prime} are nonempty. Choose $a^{\prime} \in A^{\prime}$. Since a^{\prime} is anticomplete to N by 7.10, 7.9 (with r, r^{\prime} exchanged) yields that there is an integer $h \geq(t+1) / 2$ and disjoint subsets $X_{1}, X_{2}, \ldots, X_{h}, Y_{1}, Y_{2} \subseteq V(G) \backslash(N \cup\{r, x\})$, satisfying:

- each of $X_{1}, \ldots, X_{h}, Y_{1}, Y_{2}$ induces a connected subgraph of G
- $r^{\prime} \in Y_{1}, p^{\prime} \in Y_{2}$
- for $1 \leq i \leq h$ there is an edge of G between X_{i} and Y_{1}, and an edge of G between X_{i} and Y_{2}, and
- every vertex of each of $X_{1}, \ldots, X_{h}, Y_{1}, Y_{2}$ either belongs to $N^{\prime} \cup\left\{r^{\prime}\right\}$ or is adjacent to a^{\prime}.

It follows that all these subsets are disjoint from $V(P)$ except that $p^{\prime} \in Y_{2}$, by 7.10. Let F be the union of the edge sets of $X_{1}, X_{2}, \ldots, X_{h}, Y_{1}, Y_{2}$. By contracting $r p$, all edges of P, and all edges of F, it follows that $(t+3) / 2 \leq t-1$, and so $t \geq 5$. By contracting $r p, r^{\prime} x$, all edges of P, and all edges of F, we deduce that $|B \cup C| \leq(t-3) / 2$, and so equality holds, by 7.8. Moreover, the same contraction shows that every vertex in $X(x p)$ belongs to C, except for r and possibly q; and so $|C|=(t-3) / 2$ and $B=\emptyset$ and $|X(x p)|=(t+1) / 2$. Since $t \geq 4$, there exists $c \in C$. Now c, p, r, x are pairwise adjacent, and so 7.4 implies that $|X(r c)| \geq(t+3) / 2$. Since $|B \cup C|=(t-3) / 2$, there are at least two members of $X(r c)$ not in $B \cup C \cup\{x, p\}$, say w_{1}, w_{2}; thus $w_{1}, w_{2} \in A \cup D$. In particular, $w_{1}, w_{2} \notin V(P)$, and so contracting $r p, r^{\prime} x, x c$, all edges of P, and all edges of F produces an $r r^{\prime}$-rooted $K_{2, t}$ minor, a contradiction. Thus there is no minimum counterexample $\left(G, t, r, r^{\prime}, n\right)$. This completes the proof of 7.1.

8 Higher connectivity

If we add to 1.1 the hypothesis that G is k-connected, we should expect a change in the extremal function (depending on k), and in this section we study this. First, a result of G. Ding (private communication):
8.1 For every $t \geq 0$, there exists $n(t) \geq 0$ such that every 5-connected graph with no $K_{2, t}$ minor has at most $n(t)$ vertices.

If we replace 5 -connected by 4 -connected, this is no longer true. For instance, let n be even, $n=2 m$ say, and let G be the graph with n vertices $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}$, in which for $1 \leq i \leq m, u_{i}, v_{i}$ are adjacent, and $\left\{u_{i}, v_{i}\right\}$ is complete to $\left\{u_{i+1}, v_{i+1}\right\}$ (where u_{m+1}, v_{m+1} mean $\left.u_{1}, v_{1}\right)$ and with no other edges. Then G is 4 -connected and has no $K_{2,5}$ minor. Note that in this graph, every vertex has degree 5 , and so $|E(G)|=5 n / 2$. This shows that the next result is also best possible in a sense. The next result was proved in joint work with Sergey Norin and Robin Thomas, and is more or less an analogue of 1.2 .
8.2 For every $t \geq 0$, there exists $c(t) \geq 0$ such that every 3 -connected n-vertex graph with no $K_{2, t}$ minor has at most $5 n / 2+c(t)$ edges.

Proof. The proof is a fairly standard "bounded treewidth" argument, using the methods of [8], and so we just sketch it. Let G be a 3-connected graph with no $K_{2, t}$ minor. We prove by induction on $|V(G)|$ that $|E(G)| \leq 5 n / 2+c(t)$, where $n=|V(G)|$ and $c(t)$ is a large constant.

A tree-decomposition of G is a pair $\left(T,\left(X_{s}: s \in V(T)\right)\right)$, where T is a tree and each X_{s} is a subset of $V(G)$, satisfying:

- $\bigcup_{s \in V(T)}=V(G)$, and for every edge $u v$ of G there exists $s \in V(T)$ with $u, v \in X_{s}$
- for all $s_{1}, s_{2}, s_{3} \in V(T)$, if s_{2} belongs to the path of T between s_{1}, s_{3}, then $X_{s_{1}} \cap X_{s_{3}} \subseteq$ $X_{s_{2}}$.

Let us say that a tree-decomposition $\left(T,\left(X_{s}: s \in V(T)\right)\right)$ is proper if

- for every leaf s of T (that is, a vertex with degree one in T) there is a vertex $v \in X_{s}$ such that $v \notin X_{s^{\prime}}$ for all $s^{\prime} \in V(T) \backslash\{s\}$,
- $X_{s} \neq X_{s}^{\prime}$ for every edge $s s^{\prime}$ of T, and
- for every edge $f \in E(T)$, if S is the vertex set of a component of $T \backslash f$, then $\cup_{s \in S} X_{s}$ is connected.

We define the order of an edge $s s^{\prime}$ of T to be $\left|X_{s} \cap X_{s^{\prime}}\right|$. Let us say $\left(T,\left(X_{s}: s \in V(T)\right)\right)$ is linked if it is proper, and for every two distinct vertices $s_{1}, s_{2} \in V(T)$, and every integer $k \geq 0$, either

- there are k vertex-disjoint paths in G between $X_{s_{1}}$ and $X_{s_{2}}$, or
- there is an edge of the path of T between s_{1}, s_{2} with order less than k.

Finally, we say a tree-decomposition $\left(T,\left(X_{s}: s \in V(T)\right)\right)$ is a path-decomposition if T is a path.

Since $K_{2, t}$ is planar, it follows from the main theorem of [10] that there is a number c_{1} (depending on t, but independent of G) such that G admits a tree-decomposition $\left(T,\left(X_{s}\right.\right.$: $s \in V(T))$) with $\left|X_{s}\right| \leq c_{1}$ for all $s \in V(T)$. From a theorem of Thomas [11] we may choose this tree-decomposition so that in addition it is linked. If some vertex s of T has degree more than $(t-1) c_{1}\left(c_{1}-1\right) / 2$, then $G \backslash X_{s}$ has more than $(t-1) c_{1}\left(c_{1}-1\right) / 2$ components, each with at least two attachments in X_{t} (indeed, with at least three, since G is 3-connected); so some t of them share the same two attachment vertices, and G has a $K_{2, t}$ minor, a contradiction. Thus the maximum degree in T is bounded.

On the other hand, by choosing the constant $c(t)$ in the theorem large enough, we can ensure that $|V(G)|$ is at least any desired function of t, and so $|V(T)|$ is large; and consequently
standard tree-decomposition methods yield a linked path-decomposition of $G,\left(P,\left(Y_{i}: i \in\right.\right.$ $V(P))$) say, where P has vertices $0,1, \ldots, m$ in order, say, such that m is large (at least some large function of t) and all the sets $Y_{i} \cap Y_{i+1}$ have the same size k say, where $3 \leq k \leq c_{1}$. (The sets Y_{i} may have unbounded cardinality.) The linkedness of this decomposition provides disjoint paths P_{1}, \ldots, P_{k} from Y_{0} to Y_{m}, and we may choose them with total length minimum. For $1 \leq i \leq m$ each P_{j} has a unique vertex in $Y_{i-1} \cap Y_{i}$. Let G_{i} be the subgraph $G \mid Y_{i}$.

Let I_{1} be the set of all $i \in\{1, \ldots, m-1\}$ such that some vertex of Y_{i} is not in $V\left(P_{1} \cup \cdots \cup P_{k}\right)$. For each $i \in I_{1}$, there is a component C of $G_{i} \backslash\left(P_{1} \cup \cdots \cup P_{k}\right)$, and at least one of P_{1}, \ldots, P_{k} contains an attachment of C; and by rerouting the portions of P_{1}, \ldots, P_{k} within G_{i} (using the 3 -connectivity of G) we can arrange that at least two of P_{1}, \ldots, P_{k} contain attachments of some such C. By contracting the edges of (the rerouted) P_{1}, \ldots, P_{k}, since G has no $K_{2, t}$ minor, we deduce that $\left|I_{1}\right|$ is at most some function of t.

Since m is at least some (much bigger) function of t, there is a large subpath of P containing no member of I_{1}; and so we may assume that $I_{1}=\emptyset$, by replacing P by this subpath and adjusting the constants accordingly.

Now either P_{1} contains an edge of only a bounded number of G_{1}, \ldots, G_{m-1} (at most an appropriate function of t) or it does not. In the first case we can find a large subpath of P such that all the graphs G_{i} for i in this subpath contain no edge of P_{1}; and in this case we may replace P by this subpath. In the second case, we may group the terms of the pathdecomposition so that P_{1} has an edge in every group (indeed, at least two edges in every group), and so obtain a new linked path-decomposition such that P_{1} has at least two edges in every term. By repeating this for all P_{j}, we may assume that for $1 \leq j \leq k$, if P_{j} has positive length then P_{j} has at least two edges in each G_{i}.

Let I_{2} be the set of all $i \in\{1, \ldots, m-1\}$ such that for some $j \in\{1, \ldots, k\}, P_{j}$ has positive length and there are at least two values of $j^{\prime} \neq j$ such that there is an edge of G_{i} between $V\left(P_{j}\right)$ and $V\left(P_{j^{\prime}}\right)$. For each $i \in I_{2}$, there are only k^{3} possibilities for the value of j and the two values of j^{\prime}, so there are at least $\left|I_{2}\right| / k^{3}$ values of $i \in I_{2}$ giving the same triple, say $j=1$ and the j^{\prime} values are 2,3 . By taking every second one of these, we arrange that the subpaths of P_{1} in these various G_{i} are vertex-disjoint; and then by contracting the edges of P_{2}, P_{3}, and using that G has no $K_{2, t}$ minor, we deduce that $\left|I_{2}\right| \leq 2 k^{3}(t-1)$. Thus $\left|I_{2}\right|$ is bounded, and so by replacing P by a large subpath, we may assume that $I_{2}=\emptyset$.

Now some P_{i} has positive length, say P_{1}. Then the intersection of P_{1} with each G_{i} has length at least two, and therefore has an internal vertex v_{i} say. Since G is 3 -connected and so v_{i} has degree at least three, v_{i} has a neighbour u_{i} different from its two neighbours in P_{1}. Since every neighbour of v_{i} in G belongs to Y_{i}, and P_{1} is induced, and $I_{1}=\emptyset$, there exists $j(i) \in\{2, \ldots, k\}$ such that $u_{i} \in V\left(P_{j(i)} \cap G_{i}\right)$. Since $i \notin I_{2}$, it follows that $j(i)$ is independent of the choice of v_{i}; and so every internal vertex of $P_{1} \cap G_{i}$ has a neighbour in $P_{j(i)} \cap G_{i}$, and has no neighbour in $P_{h} \cap G_{i}$ for $1 \leq h \leq k$ with $h \neq 1, j(i)$. Suppose that there is a large number (at least a large function of t) of $i \in\{1, \ldots, m-2\}$ such that $j(i) \neq j(i+1)$. Then we may group some of the terms of our path-decomposition into pairs, and obtain a new linked path-decomposition in which $\left|I_{2}\right|$ is large, and obtain a $K_{2, t}$ minor, a contradiction. Thus there are only a bounded number of $i \in\{1, \ldots, m-2\}$ such that $j(i) \neq j(i+1)$; and so we
may replace P by a large subpath and assume that $j(i)$ is the same for all i. Since $I_{2}=\emptyset$, we may assume that every internal vertex of P_{1} has neighbours in P_{2}, and has no neighbours in any P_{h} for $3 \leq h \leq k$. We repeat the same for P_{2}; thus, we may assume that every internal vertex of P_{2} has neighbours in P_{1}, and has no neighbours in any P_{h} for $3 \leq h \leq k$. (Possible P_{2} has zero length, however, in which case this statement is vacuous.)

We recall that for $1 \leq i \leq m-1, P_{1} \cap G_{i}$ has at least two edges, and hence at least one internal vertex. We may arrange that $m \geq 5$. Let the vertices of $P_{1} \cap G_{3}$ be p_{1}, \ldots, p_{s} in order, where $p_{1} \in Y_{2} \cap Y_{3}$ and $p_{s} \in Y_{3} \cap Y_{4}$. Since $m \geq 5$, it follows that p_{1}, \ldots, p_{s} have no neighbours in $Y_{0} \cup Y_{m}$ (except possibly the vertex of P_{2} if P_{2} has length zero). Let p_{0} be the neighbour of p_{1} in P_{1} different from p_{2}, and define p_{s+1} similarly. Thus p_{0} is an internal vertex of G_{2}, and p_{s+1} of G_{4}. Let $h \in\{1, \ldots, s-1\}$, and let $u=p_{h}$ and $v=p_{h+1}$. Let $X=V\left(P_{2} \cap\left(G_{2} \cup G_{3} \cup G_{4}\right)\right)$. Every neighbour of p_{h} is in $\left\{p_{h-1}\right\} \cup X$, and every neighbour of v is in $X \cup\left\{p_{h+2}\right\}$. Suppose that for some vertex w of G, G admits a 3 -cut $(A, B,\{u, v, w\})$. Since G is 3 -connected, both u, v have neighbours in both A, B, and so both A, B meet the connected sets $\left\{p_{h-1}\right\} \cup X$ and $X \cup\left\{p_{h+2}\right\}$. Consequently $w \in X$. It follows that P_{2} has positive length, and w belongs to the interior of P_{2}. Hence $w \notin Y_{0} \cup Y_{m}$; but Y_{0}, Y_{m} are both connected (since the path-decomposition is proper), and so $G \backslash\{u, v, w\}$ is connected, a contradiction. Thus there is no such 3 -cut, and so the graph obtained by contracting the edge $u v$ is 3 -connected (and this is true for every edge of $P_{1} \cap G_{3}$). Consequently there are at least two $u v$-joins w_{1}, w_{2} say, since otherwise contracting $u v$ would give a smaller counterexample. It follows that $w_{1}, w_{2} \in V\left(P_{2} \cap G_{3}\right)$, and so P_{2} has nonzero length. From the minimality of the union of P_{1}, \ldots, P_{k}, we deduce that w_{1}, w_{2} are adjacent in $P_{2} \cap G_{3}$. In particular, there are exactly two $u v$-joins, and similarly exactly two $w_{1} w_{2}$-joins. But then contracting the edges $u v$ and $w_{1} w_{2}$ gives a smaller counterexample. (Here is where the number $5 / 2$ appears.) This proves 8.2.

We can apply 8.2 to the 2 -connected case, and prove the following. (The idea of this proof is due to A. Kostochka, and he kindly gave us permission to include it here.) We recall that $\delta(s)=\frac{1}{2}(s+3-4 /(s+2))$.
8.3 Let $t \geq 0$ be odd, $t=2 s-1$ say, and let $c(t)$ be as in 8.2. Then every 2-connected n-vertex graph with no $K_{2, t}$ minor has at most $\delta(s) n+c(t)$ edges.

Proof. We proceed by induction on n. The result is easy for $t \leq 3$, so we may assume that $t \geq 5$, and $s \geq 3$. If G is 3 -connected, the claim follows from 8.2, so we may assume that G admits a 2 -cut $\left(A_{1}, A_{2},\left\{r_{1}, r_{2}\right\}\right)$ say. For $i=1,2$, let $\left|A_{i}\right|=n_{i}$, and let there be e_{i} edges with an end in A_{i}. For $i=1,2$, let G_{i} be the graph obtained from $G \mid\left(A_{i} \cup\left\{r_{1}, r_{2}\right\}\right)$ by adding the edge $r_{1} r_{2}$; and choose s_{i} minimum such that G_{i} has no $r_{1} r_{2}$-rooted $K_{2, s_{i}}$ minor. Thus $2 \leq s_{i} \leq n_{i}+1$. We assume for a contradiction that $e_{1}+e_{2}+1>\delta(s)\left(n_{1}+n_{2}+2\right)+c(t)$.
(1) For $i=1,2, e_{i} \leq \delta\left(s_{i}\right)\left(n_{i}+1\right)-2$, and $e_{i}>\delta(s) n_{i}$.

The first claim follows from 7.1 applied to G_{i}. From the inductive hypothesis applied to
the 2-connected graph G_{i}, we deduce that $e_{i} \leq \delta(s)\left(n_{i}+2\right)+c(t)-1$ for $i=1,2$, and since $e_{1}+e_{2}+1>\delta(s)\left(n_{1}+n_{2}+2\right)+c(t)$, subtracting yields the second claim. This proves (1).
(2) One of $s_{1}, s_{2}>s$, and $s_{1}+s_{2} \leq t+1$.

If $s_{1}, s_{2} \leq s$, then summing the first inequalities of (1) for $i=1,2$ yields

$$
|E(G)| \leq e_{1}+e_{2}+1 \leq \delta(s)\left(n_{1}+n_{2}+2\right)-3
$$

a contradiction; so one of $s_{1}, s_{2}>s$, and this proves the first claim. Since for $i=1,2, G_{i}$ has an $r_{1} r_{2}$-rooted $K_{2, s_{i}-1}$ minor, and yet combining these does not give a $K_{2, t}$ minor of G, it follows that $\left(s_{1}-1\right)+\left(s_{2}-1\right) \leq t-1$. This proves the second claim, and so proves (2).

In view of (2) we assume henceforth that $s_{1}>s$, and therefore $s_{2}<t+1-s=s$. Since $e_{2} \leq\left(n_{2}+2\right)\left(n_{2}+1\right) / 2-1$, and (1) implies that $e_{2}>\delta(s) n_{2}$, it follows that

$$
\delta(s) n_{2}<\left(n_{2}+2\right)\left(n_{2}+1\right) / 2-1,
$$

that is, $s-4 /(s+2)<n_{2}$, and so $n_{2} \geq s$. The inequalities of (1) yield $\delta(s) n_{2}<\delta\left(s_{2}\right)\left(n_{2}+1\right)-2$, that is,

$$
\delta(s)>\left(\delta(s)-\delta\left(s_{2}\right)\right)\left(n_{2}+1\right)+2 .
$$

But $\delta(s) \leq(s+3) / 2$, and $\delta(s)-\delta\left(s_{2}\right) \geq\left(s-s_{2}\right) / 2 \geq 1 / 2$, and $n_{2} \geq s$, and we deduce that $(s+3) / 2>(s+1) / 2+2$, a contradiction. This proves 8.3.

This result is best possible except for the constant $c(t)$, since there is a 2 -connected n vertex graph with no $K_{2, t}$ minor with $\delta(s) n-3$ edges. (To see this, take two copies of the graph defined after the statement of 7.1, with t replaced by s, and identify the roots of the first with those of the second.) We have confined ourself to the case when t is odd because the even case seems to be more difficult.

References

[1] G. Ding, T. Johnson and P. Seymour, "Spanning trees with many leaves", J. Graph Theory, 37 (2001), 189-197.
[2] A. V. Kostochka, "The minimum Hadwiger number for graphs with a given mean degree of vertices", Metody Diskret. Anal. 38 (1982), 37-58.
[3] A. V. Kostochka, "Lower bound for the Hadwiger number for graphs by their average degree", Combinatorica 4 (1984), 307-316.
[4] A. Kostochka and N. Prince, "On $K_{s, t}$ minors in graphs of given average degree", Discrete Math. 308 (2008), 4435-4445.
[5] W. Mader, "Homomorphieeigenschaften und mittlere Kantendichte von Graphen", Math. Ann. 174 (1967), 265-268.
[6] W. Mader, "Homomorphiesätze für Graphen", Math Ann. 178 (1968), 154-168.
[7] J. S. Myers, "The extremal function for unbalanced bipartite minors", Discrete Math. 271 (2003), 209-222.
[8] B. Oporowski, J. Oxley and R. Thomas, "Typical subgraphs of 3- and 4-connected graphs", J. Combinatorial Theory, Ser. B, 57 (1993), 239-257.
[9] N. Prince, Δ-systems Methods In Contemporary Graph Theory, Ph.D. thesis, U. Illinois at Urbana-Champaign, 2008.
[10] N. Robertson and P. Seymour, "Graph Minors. V. Excluding a planar graph", J. Combinatorial Theory, Ser. B, 41 (1986), 92-114.
[11] R. Thomas, "A Menger-like property of tree-width: the finite case", em J. Combinatorial Theory, Ser. B, 48 (1990), 67-76.
[12] A. Thomason, "An extremal function for contractions of graphs", Math. Proc. Cambridge Phil. Soc. 95 (1984), 261-265.
[13] A. Thomason, "The extremal function for complete minors", J. Combinatorial Th., Ser. B 81 (2001), 318-338.

[^0]: ${ }^{1}$ This research was conducted while the author served as a Clay Mathematics Institute Research Fellow.
 ${ }^{2}$ Supported by ONR grant N00014-01-1-0608 and NSF grant DMS-0070912.

