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Abstract

Let H be a graph. If G is an n-vertex simple graph that does not contain H as a minor, what
is the maximum number of edges that G can have? This is at most linear in n, but the exact
expression is known only for very few graphs H . For instance, when H is a complete graph
Kt, the “natural” conjecture, (t− 2)n− 1

2
(t− 1)(t− 2), is true only for t ≤ 7 and wildly false

for large t, and this has rather dampened research in the area. Here we study the maximum
number of edges when H is the complete bipartite graph K2,t. We show that in this case, the
analogous “natural” conjecture, 1

2
(t + 1)(n− 1), is (for all t ≥ 2) the truth for infinitely many

n.



1 Introduction

Graphs in this paper are assumed to be finite and without loops or parallel edges. A graph
H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G
by contracting edges.

Mader [5] proved that for every graph H there is a constant CH such that every graph G
not containing H as a minor satisfies |E(G)| ≤ CH |V (G)|, but determining the best possible
constant CH for a given graph H is a question that has been answered for very few graphs H .

A particular case that has been intensively studied is when H is a complete graph Kt. One
natural way to make a large dense graph with no Kt minor is to take a complete graph of
size t− 2, and add n− t + 2 more vertices each adjacent to all vertices in the complete graph.
This produces an n-vertex graph with no Kt minor and with (t− 2)n− 1

2
(t− 1)(t− 2) edges,

and Mader [6] showed that for all t ≤ 7 and n ≥ t − 2, this is the maximum possible number
of edges in an n-vertex graph with no Kt minor. It would be nice if this were true for all t,
but Mader also showed that for t ≥ 8 this is not the correct expression, and Kostochka [2, 3]
and Thomason [12, 13] showed that for large t and n the maximum number of edges is

O(t(log t)
1

2 n).
This is disappointing, at least to those with faith in Hadwiger’s conjecture. But what

about when H is a complete bipartite graph Ks,t say? When s ≤ 1 the problem is very easy,
but for K2,t it was open (for t < 1029), and is the subject of this paper.

Here is a graph with no K2,t minor (for t ≥ 2): take a graph each component of which
is a t –vertex complete graph, and add one more vertex adjacent to all the previous vertices.
This graph has 1

2
(t+1)(n−1) edges, where n is the number of vertices, and exists whenever t

divides n−1. We shall show that this is extremal. The following is our main theorem, proved
in sections 2–6:

1.1 Let t ≥ 2, and let G be a graph with n > 0 vertices and with no K2,t minor. Then

|E(G)| ≤ 1

2
(t + 1)(n − 1).

This answers affirmatively a conjecture of Myers [7], who proved 1.1 for all t ≥ 1029.
As we saw, this is best possible when n − 1 is a multiple of t, but for other values of n it

may not be best possible, and as far as we know, it could be a long way from best possible.
For instance, if n = 3

2
t, 1.1 gives an upper bound of about 1

2
tn, but the best lower bound we

know is about 5
12

tn.
What if we exclude K1,t instead of K2,t? It is easy to see that every n-vertex graph with

more than 1
2
(t− 1)n edges contains K1,t as a minor (indeed, as a subgraph), and if t divides n

then there is an n-vertex graph with exactly 1
2
(t− 1)n edges with no K1,t minor (the disjoint

union of n/t copies of Kt). Thus this question is trivial. Curiously, however, the answer is
quite different if we restrict ourselves to connected graphs. The following is shown in [1]:
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1.2 Let t ≥ 3 and n ≥ t + 2 be integers. If G is an n-vertex connected graph with no K1,t

minor, then

|E(G)| ≤ n +
1

2
t(t − 3),

and for all n, t this is best possible.

We should therefore anticipate some analogous change in the conclusion of 1.1 if we add an
appropriate connectivity hypothesis; and versions of 1.1 for higher connectivity are presented
in section 8. Assuming G is connected makes no difference (because the extremal example
given above is connected anyway); but it turns out that assuming G is 2-connected saves
roughly a factor of two, and assuming it is 3-connected makes the bound qualitatively different.
To prove the 2-connected result, we need to prove a version of 1.1 when we exclude K2,t as a
“rooted” minor, and this is the content of section 7.

More generally, what is the maximum number of edges in graphs with no Ks,t minor when
s ≥ 1? If we take a graph each component of which is a clique of size t, and add s − 1 more
vertices each adjacent to all others, then the resulting n-vertex graph has no Ks,t minor, and
has

(t + 2s − 3)(n − s + 1)/2 + (s − 1)(s − 2)/2

edges; is this the maximum? This is true for s = 1, 2; and when s = 3, Kostochka and Prince
have a proof of this for all sufficiently large t (see [9]). It is open for s = 4, 5, but for s ≥ 6
Kostochka and Prince have counterexamples [9]; indeed, Kostochka and Prince [4] proved the
following:

1.3 Let s, t be positive integers with t ≫ s. Then every graph with average degree at least
t + 3s has a Ks,t minor, and there are graphs with average degree at least t + 3s − 5

√
s that

do not have a Ks,t minor.

2 The main proof

This and the next four sections are devoted to the proof of 1.1. Let us fix t ≥ 2 (we can find
no advantage in proceeding by induction on t), and suppose the theorem is false for that value
of t. Consequently there is a minimal counterexample, that is, a graph G with the following
properties:

• G has no K2,t minor

• |E(G)| > 1
2
(t + 1)(|V (G)| − 1)

• |E(G′)| ≤ 1
2
(t + 1)(|V (G′)| − 1) for every graph G′ with no K2,t minor and |V (G′)| <

|V (G)|.
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We call such a graph G critical, and refer to the properties above as the criticality of G.
Throughout this and the next four sections, let G be a critical graph and let n = |V (G)|.
Since |E(G)| > 1

2
(t + 1)(n − 1), it follows that n ≥ t + 2.

If G is a graph and X ⊆ V (G), G|X denotes the subgraph of G induced on X, and we say
X is connected if G|X is connected. In this section we prove some preliminary lemmas about
critical graphs. In particular, we prove that if G is a critical graph then G is 2-connected, and
every edge of G is in at least 1

2
t triangles, and every two nonadjacent vertices have at least

three common neighbours. In order to prove this last statement we first have to show that
t ≥ 5. We begin with:

2.1 G is 2-connected.

Proof. For suppose not. Since n ≥ t + 2 ≥ 3, there is a partition of V (G) into three
nonempty sets V1, V2, {v} for some vertex v, such that there is no edge between V1 and V2.
For i = 1, 2 let Gi = G|(Vi ∪ {v}); let |V (Gi)| = ni and |E(Gi)| = ei. From the criticality of
G, ei ≤ 1

2
(t + 1)(ni − 1) for i = 1, 2, so, adding, we obtain

e1 + e2 ≤
1

2
(t + 1)(n1 + n2 − 2).

But |E(G)| = e1 +e2 and n = n1 +n2−1, contrary to the criticality of G. This proves 2.1.

If x, y ∈ V (G) are distinct, an xy-join is a vertex z different from x, y and adjacent to
both x, y. Let X(xy) denote the set of all xy-joins.

2.2 For every edge xy of G there are at least 1
2
t xy-joins, and consequently every vertex has

degree at least 1
2
t + 1.

Proof. Let xy be an edge. Let G′ be obtained from G by deleting all edges between x
and X(xy), and then contracting the edge xy. (Note that this contraction does not create
any parallel edges, and so G′ is indeed a “graph” as defined in this paper.) Then |E(G′)| =
|E(G)| − |X(xy)| − 1, and |V (G′)| = n − 1, and by the criticality of G,

|E(G′)| ≤ 1

2
(t + 1)(|V (G′)| − 1).

Consequently

|E(G)| − |X(xy)| − 1 ≤ 1

2
(t + 1)(n − 2),

and since

|E(G)| >
1

2
(t + 1)(n − 1)

by the criticality of G, it follows that |X(xy)| ≥ 1
2
t. This proves the first assertion of 2.2, and

the second follows immediately since every vertex is incident with some edge by 2.1.
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The length of a path or cycle is the number of edges in it. We use G \ x to denote the
graph obtained from G by deleting x; here x may be a vertex or an edge, or a set of vertices
or edges.

2.3 Let A1, A2 be disjoint connected subsets of V (G), such that there is no edge between A1

and A2. Let C be the set of all vertices with a neighbour in A1 and a neighbour in A2. Then
every two nonadjacent vertices in C have a common neighbour in C (and at least two common
neighbours in C if t is odd). Consequently if C is nonempty then it is connected.

Proof. Let c1, c2 ∈ C be nonadjacent; we claim they have a common neighbour in C, and at
least two if t is odd. For i = 1, 2, there is a path between c1, c2 with interior in Ai, since Ai

is connected and c1, c2 have neighbours in Ai. Choose such a path, Pi say, of minimal length;
then it is induced. Let pi be the neighbour of ci in Pi, for i = 1, 2. No c1p1-join belongs to
P1, since P1 is induced, and none is in P2 since p1 ∈ A1 and all internal vertices of P2 are in
A2 and there is no edge between A1 and A2. Similarly no c2p2-join is in P1 or P2. Suppose
that |X(c1p1)∪X(c2p2)| ≥ t; then by contracting all edges of P1 except c1p1, and all edges of
P2 except c2p2, we obtain a K2,t minor, a contradiction. Thus |X(c1p1) ∪ X(c2p2)| ≤ t − 1.
On the other hand, by 2.2, |X(cipi)| ≥ d, for i = 1, 2, where d is the least integer satisfying
d ≥ 1

2
t. Hence |X(c1p1) ∩ X(c2p2)| ≥ 2d − t + 1. But every vertex in X(c1p1) ∩ X(c2p2) has

neighbours in both A1 and A2, and therefore belongs to C, and is a common neighbour of
c1, c2 in C. This proves 2.3.

A related result is:

2.4 Let A1, A2 be disjoint connected subsets of V (G) with union V (G), and let C be the set
of all vertices in A2 with a neighbour in A1. Then C is connected.

Proof. Suppose not; then there is a partition of C into two nonempty subsets X1, X2, such
that there is no edge between X1 and X2. Since A2 is connected, there is a path of G|A2

with one end in X1 and the other in X2. Choose such a path, P2 say, with minimum length.
Let its ends be ci ∈ Xi for i = 1, 2. Since c1, c2 both have neighbours in A1, there is a
minimal path P1 between c1, c2 with interior in A1. For i = 1, 2, let pi be the neighour of
ci in Pi. By 2.2, |X(cipi)| ≥ t/2 for i = 1, 2, and no cipi-join belongs to P1 or to P2, and if
X(c1p1) ∩ X(c2p2) = ∅ then we find a K2,t minor. Thus some vertex v ∈ X(c1p1) ∩ X(c2p2).
Since p2 does not belong to C, it follows that p2 has no neighbour in A1 and so v /∈ A1.
Consequently v ∈ A2, since A1 ∪ A2 = V (G); and v is adjacent to p1 ∈ A1, and so v ∈ C; yet
v has neighbours in both X1, X2, which is impossible. This proves 2.4.

It follows from 2.4 that for every vertex v, the set of neighbours of v is connected (taking
A1 = {v} and A2 = V (G) \ {v}; the latter is connected by 2.1).

2.5 For every two nonadjacent vertices x, x′ there are at least three xx′-joins, and so G is
3-connected.
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Proof. Suppose there are at most two. Since G is 2-connected, there are two induced paths
P, Q between x, x′, vertex-disjoint except for their ends; and since there are at most two xx′-
joins, we may choose P, Q such that every xx′-join is a vertex of one of P, Q. Let p, q be the
neighbours of x in P, Q respectively, and define p′, q′ similarly for x′. Let N be the set of all
neighbours of x, and define N ′ similarly. Let d = ⌈1

2
t⌉.

Let us suppose that:

(1) There do not exist disjoint connected subsets A, B, C1, . . . , Cd of N ∪ {x} with the fol-
lowing properties:

• for 1 ≤ i ≤ d there is an edge of G between Ci and A, and an edge of G between Ci and
B

• p ∈ A and q ∈ B.

We shall derive several consequences of this, and eventually reach a contradiction.
Let H be the subgraph G|N . Every vertex of H has degree at least d in H , since for each

v ∈ V (H), there are at least d xv-joins in G, by 2.2. If p has d neighbours in H different
from q, we may set A = {p}, B = {q, x}, and let C1, . . . , Cd each consist of some neighbour
of p different from q, contrary to (1). So p has degree exactly d in H , and p, q are adjacent;
let the other neighbours of p be v1, . . . , vd−1 say. If q is adjacent in H to each of v1, . . . , vd−1,
we may set A = {p}, B = {q}, Ci = {vi} for 1 ≤ i ≤ d − 1 and Cd = {x}, contrary to (1).
Thus we may assume that d ≥ 2 and q is not adjacent to vd−1. Let Y = N \{p, q, v1, . . . , vd−1}.

(2) If r1- · · · -rk is a path R of H with r1 ∈ {v1, . . . , vd−1} and r2, . . . , rk ∈ Y , then rk has
at most one neighbour in Y different from r2, . . . , rk−1.

For suppose it has two, say y1, y2. Let r1 = vj say. Then we may set A = {p} ∪ V (R), B =
{q, x}, Ci = {vi} for 1 ≤ i ≤ d − 1 with i 6= j, Cj = {y1}, and Cd = {y2}, contrary to (1).
This proves (2).

Suppose first that d = 2; thus every vertex in H has degree at least two. If the edge pq
does not belong to a cycle of H , then (by taking a maximal path containing p and not q) it
follows that there is a path between p and some vertex of H with degree at least three, not
passing through q; but a minimal such path is contrary to (2). Thus there is a cycle of H
containing pq, say p = p-p1- · · · -pk-q-p; but then we may set A = {p}, B = {p2, . . . , pk, q},
C1 = {x}, and C2 = {p1}, contrary to (1).

Thus d ≥ 3. By taking k = 1 and r1 = vd−1 we deduce that vd−1 has at most one neighbour
in H different from all of p, v1, . . . , vd−2. But vd−1 has degree at least d in H , and so vd−1 is
adjacent to all of p, v1, . . . , vd−2, and has exactly one more neighbour in H , say vd.

By taking k = 2, r1 = vd−1 and r2 = vd, we deduce from (2) that vd has at most one
neighbour in Y . Suppose that vd is not adjacent to q in H . Since vd has degree at least d in
H , vd is adjacent to all of v1, . . . , vd−1 and it has exactly one other neighbour in H , say vd+1.
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By (2) with k = 3 and r1 = vd−1, r2 = vd and r3 = vd+1, we deduce that vd+1 has at most one
neighbour in Y different from vd. But each of v1, . . . , vd−1 has at most one neighbour in Y ,
and they are adjacent to vd ∈ Y , as we already saw, so vd+1 has at most two neighbours in
H different from q. Since vd+1 has at least d ≥ 3 neighbours in H , we deduce that q, vd+1 are
adjacent. But then we may set A = {p}, B = {q, vd+1, vd}, Ci = {vi} for 1 ≤ i ≤ d − 1, and
Cd = {x}, contrary to (1). This proves that vd is adjacent to q.

If vd is adjacent to all of v1, . . . , vd−1, we may set A = {p}, B = {q, vd}, Ci = {vi} for
1 ≤ i ≤ d − 1 and Cd = {x}, contrary to (1). So we may assume that vd is nonadjacent to
v1 say. We already saw that vd has at most one neighbour in Y ; and since it has degree at
least d in H , vd is adjacent to v2, . . . , vd−1, q and to one new vertex. If q is adjacent to v1, we
may set A = {p}, B = {q, vd}, Ci = {vi} for 1 ≤ i ≤ d − 1, and Cd = {x}, contrary to (1).
Thus q is nonadjacent to v1. By the same argument (with v1, vd−1 exchanged) we deduce that
v1 has a unique neighbour (say vd+1) in Y , and is adjacent to all of v2, . . . , vd1

, and vd+1 is
adjacent to all except one of v2, . . . , vd−1. Now vd+1 6= vd since vd is nonadjacent to v1, and at
least d − 3 of v1, . . . , dd−1 are adjacent to both vd, vd+1. Since v1, . . . , vd−1 each have at most
one neighbour in Y , we deduce that d = 3. But then we may set A = {p}, B = {q, v3, v4},
C1 = {v1}, C2 = {v2} and C3 = {x}. This proves that our assumption of (1) was false.

Consequently there exist disjoint connected subsets A, B, C1, . . . , Cd of N ∪ {x} with the
following properties:

• for 1 ≤ i ≤ d there is an edge of G between Ci and A, and an edge of G between Ci and
B

• p ∈ A and q ∈ B.

Similarly, if N ′ denotes the set of neighbours of x′, and p′, q′ are the neighbours of x′ in
P, Q respectively, there exist disjoint connected subsets A′, B′, C ′

1, . . . , C
′

d of N ′ ∪ {x′} with
the following properties:

• for 1 ≤ i ≤ d there is an edge of G between C ′

i and A′, and an edge of G between C ′

i

and B′

• p′ ∈ A′ and q′ ∈ B′.

But then contracting all edges with both ends in one of

A ∪ A′ ∪ (V (P ) \ {x, x′}), B ∪ B′ ∪ (V (Q) \ {x, x′}), C1, . . . , Cd, C
′

1, . . . , C
′

d

gives a K2,t minor, a contradiction. This proves 2.5.
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3 Vertices of large degree

In this section we prove some results about vertices of degree at least t + 1, and particularly
about vertices with degree close to n. We denote the complement graph of G by G. A cut
of G is a partition (A1, A2, C) of V (G) such that A1, A2 are nonempty, and there is no edge
between A1 and A2; and if |C| = k we call it a k-cut. If X ⊆ V (G), by a component of X we
mean the vertex set of a component of G|X. First we need:

3.1 n ≥ t + 4.

Proof. We are given that t ≥ 2, and since |E(G)| > 1
2
(t + 1)(n− 1) it follows that t + 1 < n.

Suppose that n = t + 2. Then the complement G has fewer than

1

2
n(n − 1) − 1

2
(n − 1)2 =

1

2
(n − 1)

edges, and so some two vertices have degree 0 in G; so in G these two vertices are both
adjacent to all others, and G has a K2,t subgraph, a contradiction.

Now suppose that n = t + 3. Then G has fewer than

1

2
n(n − 1) − 1

2
(n − 2)(n − 1) = n − 1

edges, and so at most n − 2. Thus there are two vertices of G both with degree at most one.
If some vertex has degree zero in G, choose another with degree at most one; then in G they
have at least t common neighbours and so G has a K2,t subgraph, a contradiction. So every
vertex has degree at least one in G. Let v1, . . . , vk be those with degree one, and u1, . . . , uk

their respective neighbours. Thus k ≥ 2. If u1 = u2 or u1 = v2, then in G, v1, v2 have t
common neighbours, a contradiction. Consequently u1, . . . , uk, v1, . . . , vk are all distinct. If u1

has only two neighbours in G, say v1, w1, then u1, v1 have t common neighbours in G; so each
ui has degree at least three in G. Hence the sum of the degrees of all vertices in G is at least
2n, a contradiction. This proves 3.1.

3.2 If x1, x2 are nonadjacent vertices then deg(x1) + deg(x2) ≤ n + t − 4, while if x1, x2 are
adjacent then deg(x1) + deg(x2) ≤ n + t − 2.

Proof. Let G0 be the graph obtained from G by deleting the edge x1x2 if it exists (and G0 = G
if not). For i = 1, 2 let di be the degree of xi in G0. We need to show that d1 + d2 ≤ n+ t− 4.
There do not exist t paths in G0 between x1, x2, disjoint except for their ends, because then G
would contain a K2,t minor. Thus by Menger’s theorem there is a partition of V (G) into three
sets A1, A2, C with x1 ∈ A1, x2 ∈ A2, such that |C| ≤ t − 1 and there are no edges between
A1 and A2. Now for i = 1, 2, di ≤ |Ai| + |C| − 1, and so

d1 + d2 ≤ |A1| + |A2| + 2|C| − 2 = n + |C| − 2 ≤ n + t − 3.
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We may therefore assume that equality holds, and so |C| = t−1 and for i = 1, 2 xi is adjacent
to every other vertex in Ai ∪ C. By 2.5 |C| ≥ 3 and so t ≥ 4.

By 3.1, |A1| + |A2| ≥ 5 since |C| ≤ t − 1, and so we may assume that |A1| ≥ 3. If some
c ∈ C is adjacent to two members a, a′ of A1 \ {x1}, then contracting the edge x2c gives a K2,t

minor, a contradiction. Thus each vertex in C has at most one neighbour in A1 \ {x1}.
Suppose that A1 \{x1} is stable. Choose distinct a, a′ ∈ A1 \{x1}; then deg(a)+deg(a′) ≤

|C|+ 2 = t + 1, contrary to 2.2. Thus there is an edge aa′ with a, a′ ∈ A1 \ {a1}. By 2.5 there
is an ax2-join, and so there exists c ∈ C adjacent to a. By 2.2 there are at least 1

2
t aa′-joins,

and so at least two, since t ≥ 3; let b be an aa′-join different from x1. Then b /∈ C, and so
b ∈ A1 \ {x1}. Since both a′, b are adjacent to both x1, a, it follows that contracting the edges
x2c and ac gives a K2,t minor, a contradiction. This proves 3.2.

For each vertex v ∈ V (G), let us define surplus(v) = deg(v)−t, and for a subset X ⊆ V (G),
surplus(X) denotes the sum of surplus(v) over all v ∈ X.

3.3 surplus(V (G)) ≥ n − t, and at least three vertices have positive surplus.

Proof. By the criticality of G, 2|E(G)| ≥ (t + 1)(n − 1) + 1, and so 2|E(G)| − nt ≥ n − t.
Consequently

surplus(V (G)) =
∑

v∈V (G)

(deg(v) − t) = 2|E(G)| − nt ≥ n − t.

This proves the first assertion. For the second, note that 3.2 implies that for every two vertices
x1, x2, surplus(x1)+surplus(x2) ≤ n−t−2, and so at least three vertices have positive surplus.
This proves 3.3.

3.4 For every vertex v of G there are at least two vertices nonadjacent to v.

Proof. Suppose there is at most one such vertex, and so |A| ≥ n − 2, where A is the set of
neighbours of v. By 3.3 there are at least three vertices with degree at least t + 1, so at least
one of them is in A, say u. Thus u has at least t− 1 neighbours in A. Now u, v have at most
t − 1 common neighbours, since G has no K2,t subgraph; and so |N | = t − 1, where N is the
set of neighbours of u in A. By 3.1, n ≥ t + 4, and so |A| ≥ t + 2. Let M = A \ (N ∪ {u}).
Now |M | ≥ 2; choose m1, m2 ∈ M , distinct. By 2.5 and by 2.2, there are at least three
m1m2-joins, and u is not any of them, so at least one is in A \ {u}. If w ∈ N is an m1m2-join,
then contracting the edge uw gives a K2,t minor. Thus some m3 ∈ M is an m1m2-join. By
2.5, there exists x ∈ N adjacent to m3. But then contracting the edges ux, xm3 gives a K2,t

minor. This proves 3.4.
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3.5 G is 5-connected, and so t ≥ 6.

Proof. Let (A1, A2, C) be a cut of G, chosen with |C| minimum. Suppose that |C| ≤ 4. For
each a1 ∈ A1 and a2 ∈ A2, since a1, a2 have three common neighbours by 2.5, it follows that
they both have at least three neighbours in C. Thus every vertex in V (G) \ C has at least
three neighbours in C. Choose c, c′ ∈ C; then since |V (G) \ C| ≥ n − 4 ≥ t by 3.1, some
vertex in V (G) \ C is not adjacent to one of c, c′. Consequently |C| = 4.

Suppose that C = {c1, c2, c3, c4} where c1c2 and c3c4 are edges. Every vertex in V (G) \ C
is adjacent to one of c1, c2 and to one of c3, c4, and it follows that contracting the edges c1c2

and c3c4 gives a K2,t minor. Hence no two edges of G|C are disjoint. But C is connected, by
2.3, and so we may assume that some vertex c ∈ C is adjacent to every vertex in C \ {c}, and
the other vertices in C are pairwise nonadjacent. By 3.4 there is a vertex nonadjacent to c,
say a1 ∈ A1. Choose a2 ∈ A2; then C \ {c} is the set of all a1a2-joins, and yet C \ {c} is not
connected, contrary to 2.3. Thus |C| ≥ 5. This proves that G is 5-connected. By 3.4 there
are two nonadjacent vertices, and therefore there are five paths joining them, with disjoint
interiors. Since G has no K2,t minor it follows that t ≥ 6. This proves 3.5.

4 Neighbour sets of little subsets

If W ⊆ V (G), we denote by N(W ) the set of all vertices of G not in W but with a neighbour
in W , and M(W ) the set of vertices not in W with no neighbour in W . For a vertex v, we
write N(v), M(v) for N({v}), M({v}). In this section we give the central argument of the
proof of 1.1; we show that either t ≤ 10 or there is no edge w1w2 with |N({w1, w2})| ≥ t + 4.
Then the remainder of the proof of 1.1 consists of handling the cases left open by this result.

Several of the steps to come depend on finding a small (at most four vertices) connected
subset W , such that |N(W )| is large (at least t + 3 and preferably larger), and trying to find
a connected subset W ′ disjoint from W such that N(W ′) has at least t vertices in common
with N(W ) (for this would yield a K2,t minor). We begin with some lemmas. We denote by
λ(W ) the minimum k such that for every nonempty subset X ⊆ W , some vertex in X has at
most k neighbours in X. (This is sometimes called the degeneracy of G|W .)

4.1 Let W ⊆ V (G).

• If W is connected and |W | ≤ 4 then N(W ) is connected.

• Every vertex in N(W ) has at least 1
2
t − λ(W ) neighbours in N(W ).

Proof. To prove the first statement, suppose that W is connected and |W | ≤ 4. By 3.5,
V (G) \ W is connected. But also W is connected, so N(W ) is connected by 2.4. For the
second statement, let v ∈ N(W ). Let X be the set of neighbours of v in W . Since X is
nonempty, some vertex x ∈ X has at most λ(W ) neighbours in X. But there are at least 1

2
t

vx-joins by 2.2, and at most λ(W ) of them are in W , since x has at most λ(W ) neighbours
in X. Thus all the others are in N(W ). This proves 4.1.
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If X ⊆ V (G) we say an edge is within X if it has both ends in X. Let us say a grasp is
a pair (X, Y ) of disjoint subsets of V (G), such that X is nonempty and connected and every
vertex in Y has a neighbour in X.

4.2 Let W ⊆ V (G) be connected with |W | ≤ 4. Let (X, Y ) be a grasp where X ∩W = ∅ and
Y ⊆ N(W ). Let Z = N(W ) \ (X ∪ Y ).

• If |W | ≤ 2 then |Z| < 2(t − |Y |).

• If 3 ≤ |W | ≤ 4 and G|W is not isomorphic to K4, and t ≥ 11, then |Z| ≤ 2(t − |Y |).

Proof. With G, W fixed, we prove both claims simultaneously by induction on |V (G)|−|X∪
Y |. If some z ∈ Z has a neighbour in X, then the result follows from the inductive hypothesis
applied to the grasp (X, Y ∪ {z}); while if some v ∈ M(W ) \ X has a neighbour in X, the
result follows from the inductive hypothesis applied to the grasp (X ∪ {v}, Y ). Thus we may
assume that

(1) N(X) ⊆ Y ∪ W .

We may also assume that

(2) If z1, z2 ∈ Z are distinct then every z1z2-join belongs to Z ∪ W .

For suppose that u is a z1z2-join that is not in Z∪W . Thus either u ∈ X∪Y , or u ∈ M(W )\X.
Certainly u /∈ X since z1 /∈ N(X) by (1). If u ∈ Y , the result follows from the inductive hy-
pothesis applied to the grasp

(X ∪ {u}, (Y \ {u}) ∪ {z1, z2}).
Thus u ∈ M(W ) \ X, and so u /∈ N(X) by (1). Choose x ∈ X, and let y be a ux-join. Since
u /∈ W ∪N(W ), it follows that y /∈ W , and so y ∈ Y by (1). But then the result follows from
the inductive hypothesis applied to the grasp

(X ∪ {y, u}, (Y \ {y} ∪ {z1, z2}).
This proves (2).

We may assume that

(3) Every vertex in Z with a neighbour in Y has at most two neighbours in Z, and has
no neighbours in Z if t ≥ 11.

For suppose some z ∈ Z has neighbours z1, . . . , zd ∈ Z, where d ≥ 1, and a neighbour
y ∈ Y . If d ≥ 3 then the result follows from the inductive hypothesis applied to the grasp

(X ∪ {y, z}, (Y \ {y}) ∪ {z1, z2, z3}),
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so we may assume that d ≤ 2; and hence we may also assume that t ≥ 2|W | + 3. There are
at least 1

2
t zz1-joins in G; they all belong to Z ∪ W , by (2); but at most d − 1 are in Z, and

so d − 1 + |W | ≥ t/2. Since d ≤ 2, this proves (3). This proves (3).

(4) Every vertex in Z has a neighbour in Y .

For suppose first that |W | ≤ 2, and let x ∈ X. For each z ∈ Z, there are at least three
xz-joins by 2.5, and at least one, y say, is not in W . By (1) y ∈ Y , and so z has a neighbour
in Y as claimed. Thus we may assume that |W | ≥ 3, and so t ≥ 11 by hypothesis. Suppose
that some vertex in Z has no neighbour in Y . Since Y 6= ∅ and N(W ) is connected by 4.1,
there are distinct vertices z, z′ ∈ Z and y ∈ Y such that z′ has no neighbours in Y and z is
adjacent to both y, z′; but this contradicts the final assertion of (3). This proves (4).

Now let us complete the proof of the first assertion of the theorem. Let |W | ≤ 2, and
suppose for a contradiction that |Z| ≥ 2(t−|Y |). Since |Y | < t (because otherwise contracting
all edges within X and within W produces a K2,t minor), it follows that |Z| ≥ 2. If z1, z2 ∈ Z
are distinct, 2.2 and 2.5 imply that there is a z1z2-join u /∈ W , and therefore in Z by (2). It
follows that every two vertices in Z have a common neighbour in Z. In particular, we may
choose z1, z2 adjacent, and so there are three vertices in Z, pairwise adjacent, say z1, z2, z3.
By (3) and (4), no other vertex in Z has a common neighbour with z1, and so Z = {z1, z2, z3}.
Since |Z| ≥ 2(t − |Y |), it follows that |Y | = t − 1. Choose y ∈ Y adjacent to z3. Then
contracting all edges within X ∪ {y, z3} and W yields a K2,t minor, a contradiction. This
completes the proof of the first assertion.

Now we prove the second assertion. Thus, t ≥ 11; G|W is not isomorphic to K4 (and
so λ(w) ≤ 2); Z is stable by (3) and (4); and we suppose for a contradiction that |Z| ≥
2(t − |Y |) + 1. Since every vertex in Z has at least t/2 − λ(W ) ≥ t/2 − 2 neighbours in
N(W ) from 4.1, and all these neighbours belong to Y by (4), it follows that there are at least
|Z|(t/2 − 2) edges between Y and Z. But there are at most |Y | such edges, by (2), and so
|Z|(t/2 − 2) ≤ |Y |. Now |Z| ≥ 2(t − |Y |) + 1, and so (2(t − |Y |) + 1)(t/2 − 2) ≤ |Y |, that
is (2t + 1)(t/2 − 2) ≤ |Y |(t − 3) ≤ (t − 1)(t − 3), a contradiction since t ≥ 11. This proves
4.2.

The proof of the next theorem is the central argument of the paper, disposing of “most”
possibilities for a critical graph G.

4.3 Let W ⊆ V (G) be connected with |W | ≤ 2. If t ≥ 11 then |N(W )| ≤ t + 3.

Proof. Suppose that t ≥ 11 and |N(W )| ≥ t + 4. By 3.4 we may assume that |W | = 2,
W = {w1, w2} say. Let A = N(W ) and B = M(W ). For each vertex v ∈ A ∪ B, let d(v)
denote the number of neighbours of v in A ∪ B.

(1) Let v1, v2 ∈ A ∪ B be distinct. Then d(v1) + d(v2) ≤ 2t − 2; and if d(v1) + d(v2) ≥ 2t − 3
then v1, v2 are adjacent and there is no v1v2-join in B.
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For we may assume that d(v1) + d(v2) ≥ 2t − 3. For i = 1, 2, let Ai denote the set of
vertices in A different from v1, v2 that are adjacent to vi, and let Bi be the set of vertices
in B different from v1, v2 that are adjacent to vi. For i = 1, 2 let ui = vi if vi ∈ A and let
ui ∈ A \ {v1, v2} be adjacent to vi if vi ∈ B. (Such vertices ui exist by 2.5.)

By the second assertion of 4.2, applied taking W ′ = W ∪{u1, v1} to be the set called W in
that theorem, X = {v2}, Y the set of neighbours of v2 in N(W ′), and Z = N(W ′) \ (X ∪ Y ),
we deduce that |Z| ≤ 2(t − |Y |), since t ≥ 11. For i = 1, 2, let ai = 1 if vi ∈ A and ai = 0
otherwise; and let b1 = 1 if u1 ∈ A2 (and therefore ui 6= vi and vi ∈ B), and b1 = 0 otherwise,
and define b2 similarly. Now

|Z| ≥ |A \ ({u1, v2} ∪ A2)| + |B1 \ B2| ≥ t + 3 − |A2| + b1 − a2 + |B1 \ B2|,

since |A| ≥ t + 4; and |Y | ≥ |A2| − b1 + |B1 ∩ B2|. Consequently

t + 3 − |A2| + b1 − a2 + |B1 \ B2| ≤ 2(t − |A2| + b1 − |B1 ∩ B2|),

that is,
|A2| + |B1| + |B1 ∩ B2| ≤ t + b1 + a2 − 3.

By exchanging v1, v2 and adding, we obtain

|A1| + |A2| + |B1| + |B2| + 2|B1 ∩ B2| ≤ 2t − 6 + a1 + a2 + b1 + b2.

Now for i = 1, 2, d(vi) = |Ai| + |Bi| + x, where x = 1 if v1, v2 are adjacent and otherwise
x = 0. Let d(v1) + d(v2) = 2t − 3 + y, where y ≥ 0; we deduce that

|A1| + |A2| + |B1| + |B2| + 2x = 2t − 3 + y.

Combining this with the previous inequality, we deduce that

2t − 3 + y − 2x + 2|B1 ∩ B2| ≤ 2t − 6 + a1 + a2 + b1 + b2,

that is, 3+y+2|B1∩B2| ≤ 2x+a1+a2+b1+b2. Now if v1 ∈ A then v1 /∈ A2 from the definition
of A2, and so a1 + b1 ≤ 1, and similarly a2 + b2 ≤ 1; and so a1 + a2 + b1 + b2 ≤ 2, and there-
fore y+1+2|B1∩B2| ≤ 2x. Consequently x = 1 and |B1∩B2| = 0, and y ≤ 1. This proves (1).

(2) d(v) ≤ t − 1 for each v ∈ A ∪ B.

For suppose that d(v1) ≥ t for some v1 ∈ A ∪ B; say d(v1) = t + x where x ≥ 0. By
(1), d(v2) ≤ t−x−2 for every v2 ∈ A∪B different from v1, and if v1, v2 are nonadjacent then
d(v2) ≤ t − x − 4. Thus one vertex of G|(A ∪ B) has degree t + x; t + x more have degree
at most t − x − 2; and the remaining n − t − x − 3 vertices have degree at most t − x − 4.
Consequently the sum over all v ∈ A ∪ B of d(v) is at most

t+x+(t+x)(t−x− 2)+ (n− t−x− 3)(t−x− 4) = tn−x(n− 6)− 4(n− 3) ≤ tn− 4n+12.
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By 3.2, deg(w1) + deg(w2) ≤ n + t − 2, and so

2|E(G)| ≤ tn − 4n + 12 + 2(n + t − 2) − 2 = tn − 2n + 6 + 2t.

But from the criticality of G, 2|E(G)| > (t + 1)(n − 1), and so 3n < 7 + 3t, contrary to 3.1.
This proves (2).

By (2), every vertex in A has degree at most t + 1, and every vertex in B has degree at
most t−1. Let X be the set of all vertices v ∈ A with deg(v) = t+1. By the first assertion of
4.2, every vertex in A has at most t− 2 neighbours in A (in fact, at most t− 4, though we do
not need this); and consequently every vertex in X has a neighbour in B. But if v ∈ X then
d(v) ≥ t−1, and so no two members of X∩A are adjacent to the same member of B. It follows
that |X| ≤ |B|. But surplus(A) ≤ |X|, and surplus(B) ≤ −|B|, and so surplus(A ∪ B) ≤ 0.
Since surplus(V (G)) ≥ n− t by 3.3, it follows that surplus(w1)+surplus(w2) ≥ n− t, contrary
to 3.2. This proves 4.3.

5 Small t cases

In this section we focus on strengthening 4.3 when t is small. We make a start on this with
the following corollary of 4.2:

5.1 t ≥ 7.

Proof. By 3.3 there is a vertex w of degree at least t + 1. Let C be a component of M(w)
(this exists, by 3.4); then N(C) ⊆ N(w). By 3.5, |N(C)| ≥ 5. By the first assertion of
4.2 applied to the grasp (C, N(C)), we deduce that |N(W ) \ N(C)| < 2(t − |N(C)|), and so
2t > |N(W )| + |N(C)| ≥ (t + 1) + 5. This proves 5.1.

We need an elaboration of this. Given integers h ≥ 3 and z ≥ 0, we define β0 = 0, and for
1 ≤ i ≤ h − 2, we define inductively

βi = βi−1 + ⌈3(z − βi−1)/(h − i + 1)⌉.

We write βi(h, z) for βi to show the dependence on h, z. Note that βi(h, z) ≤ z and βi(h, z) is
monotone nondecreasing in z. (To see the latter, prove inductively that if z is increased by 1
then either βi(h, z) remains the same or increases by 1.)

5.2 Let W ⊆ V (G) be connected with |W | ≤ 2. Then there exists h with 5 ≤ h ≤ t − 2 such
that

βi(h, z) − 2i < 2t − h − |N(W )|
for all i with 0 ≤ i ≤ h − 2, where z = |N(W )| − h.
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Proof. If |N(W )| ≤ t, then every choice of h with 5 ≤ h ≤ t − 2 satisfies the theorem (and
there is such a choice by 5.1), since βi(h, z) ≤ z = |N(W )|−h for i > 0. Thus we may assume
that |N(W )| > t.

Suppose first that M(W ) = ∅. By 3.3, some vertex v ∈ N(W ) has degree at least t+1, and
hence has at least t−1 neighbours in N(W ). By 4.2 applied to the grasp ({v}, N(v)∩N(W )),
we deduce that

|N(W )| − (1 + |N(v) ∩ N(W )|) < 2(t − |N(v) ∩ N(W )|),

and so
|N(W )| ≤ 2t − |N(v) ∩ N(W )| ≤ t + 1.

Thus n ≤ t + 3, contrary to 3.1. Therefore M(W ) is nonempty; let C be a component of
M(W ). Let Z = N(W ) \ N(C), let h = |N(C)|, and let z = |Z| = |N(W )| − h; we will show
that h, z satisfy the theorem. Certainly h ≥ 5 since G is 5-connected by 3.5. By 4.2 applied
to the grasp (C, N(C)), it follows that

|N(W )| − |N(C)| < 2(t − |N(C)|),

and since |N(W )| > t, we deduce that h = |N(C)| ≤ t − 2.

(1) For 0 ≤ i ≤ h − 2, there exists Xi ⊆ N(C) with |Xi| = i such that at least βi(h, z)
vertices in N(W ) \ N(C) have neighbours in Xi.

This is trivial for i = 0, since β0(h, z) = 0. We proceed by induction on i. Thus, assume that
1 ≤ i ≤ h−2 and there exists Xi−1 ⊆ N(C) with |Xi| = i−1 such that |Y | ≥ βi−1(h, z), where
Y is the set of vertices in N(W ) \N(C) with a neighbour in Xi−1. Choose c ∈ C; then every
vertex in Z \Y has at least three common neighbours with c by 2.5, and therefore has at least
three neighbours in N(C), and therefore in N(C) \ Xi−1, since it has no neighbour in Xi−1.
Consequently there exists x ∈ N(C) \Xi−1 with at least ⌈3|Z \ Y |/(h− i + 1)⌉ neighbours in
Z \Y . Let Xi = Xi−1 ∪{x}; then there are at least |Y |+ ⌈3(z−|Y |)/(h− i+1)⌉ vertices in Z
with a neighbour in Xi. Since this expression is increasing with |Y | (because h − i + 1 ≥ 3),
and |Y | ≥ βi−1(h, z), it follows that there are at least

βi−1(h, z) + ⌈3(z − βi−1(h, z))/(h − i + 1)⌉ = βi(h, z)

such vertices. This proves (1).

Now let i satisfy 0 ≤ i ≤ h − 2, and let Xi be as in (1). Let Yi be the set of vertices in Z
with a neighbour in Xi. Thus |Yi| ≥ βi(h, z). From the first assertion of 4.2, applied to the
grasp (C ∪ Xi, (N(C) \ Xi) ∪ Yi), we deduce that

|N(W )| − |N(C)| − |Yi| < 2(t − (h − |Xi|) − |Yi|),

that is, z − |Yi| < 2t − 2h + 2i − 2|Yi|. Since |Yi| ≥ βi(h, z) and z = |N(W )| − h, it follows
that |N(W )| + βi(h, z) < 2t − h + 2i. This proves 5.2.
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From 5.2 we deduce the following strengthening of 4.3 (note that the case of small t is still
exceptional, but now it is a good exception rather than a bad one):

5.3 Let W ⊆ V (G) be connected with |W | ≤ 2. Then |N(W )| ≤ t + 3, and if t ≤ 13 then
|N(W )| ≤ t + 2.

Proof. We may assume that |N(W )| ≥ t + 3. We show first that t ≥ 14. Choose h, z as in
5.2; then 5 ≤ h ≤ t − 2, and

βi(h, z) − 2i < 2t − h − |N(W )|

for all i with 0 ≤ i ≤ h − 2. Consequently

βi(h, t + 3 − h) − 2i ≤ t − h − 4,

for all i with 0 ≤ i ≤ h − 2, since βi(h, z) is a nondecreasing function in z. Setting i = 0,
we deduce that h ≤ t − 4. In particular t ≥ 9, since h ≥ 5. Also we may assume h ≤ 9, for
otherwise it follows that t ≥ 14 as required. Setting i = 1 gives

β1(h, t + 3 − h) ≤ t − h − 2,

and so 3(t+3−h)/h ≤ t−h− 2, that is, 3(t+3)/h ≤ t−h+1. If h = 5 this implies 29 ≤ 2t,
and so t ≥ 15 as required. If h = 9 this implies 27 ≤ 2t as required. We may therefore assume
that 6 ≤ h ≤ 8. Setting i = 2 gives β2(h, t + 3 − h) ≤ t − h, and so

⌈3(t + 3 − h)/h⌉ + ⌈3(t + 3 − h − ⌈3(t + 3 − h)/h⌉)/(h − 1)⌉ ≤ t − h,

that is,
3(t + 3)/h + ⌈9/(h − 4)⌉ ≤ t − (h − 3).

If h = 6 this gives 19 ≤ t as required. If h = 7 this gives 29 ≤ 2t as required. If h = 8 this
gives 73 ≤ 5t as required. This proves that t ≥ 14. From 4.3 it follows that |N(W )| = t + 3.
This proves 5.3.

6 Finding an edge with a large neighbourhood

Now we can complete the main proof.

Proof of 1.1.

An edge uv is dominating if every vertex of G is adjacent or equal to one of u, v. Take a
vertex w of maximum degree t+ s say, chosen if possible such that there is a dominating edge
not incident with w. Let A = N(w), and B = M(w).
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(1) Every vertex in A has at most 4 − s neighbours in B, and at most 3 − s if t ≤ 13.

For let a ∈ A, with say d neighbours in B. Then |N({w, a})| = t + s − 1 + d, and so by
5.3, t + s − 1 + d ≤ t + 3, and t + s − 1 + d ≤ t + 2 if t ≤ 13. This proves (1).

(2) Every vertex in B has at least max(3, 1
2
t+ s−2) neighbours in A, and at least max(3, 1

2
t+

s − 1) if t ≤ 13.

For let b ∈ B. Since w, b have at least three common neighbours by 2.5, it remains (for
the first assertion) to show that b has at least 1

2
t + s − 2 neighbours in A. Choose a ∈ A

adjacent to b. There are at least 1
2
t ab-joins by 2.2, and at most 3 − s of them belong to B,

since a has at most 4− s neighbours in B ; so at least 1
2
t + s− 3 of them belong to A and are

different from a. Thus b has at least 1
2
t+s−2 neighbours in A. This proves the first assertion

of (2), and the second follows similarly.

(3) Every vertex in A has at most t − s neighbours in A.

For let v ∈ A, let Y be the set of its neighbours in A, and Z = A \ (Y ∪ {v}). By the
first assertion of 4.2, |Z| < 2(t − |Y |), and since |Z| = s + t − 1 − |Y |, this proves (3).

(4) s ≤ 2.

For (1) implies that s ≤ 4. If s = 4, then since G is connected, (1) implies that B is
empty, contrary to 3.4. Suppose that s = 3. By (2), every vertex in B has at least 1

2
t + 1

neighbours in A, and so (1) implies that |B| ≤ 2, and so |B| = 2 by 3.4. The two members of
B have no common neighbour, contrary to 2.2 and 2.5. This proves (4).

Let e1 denote the number of edges between A and B, and e2 the number of edges with
both ends in B.

(5) If s = 2, then t ≥ 14 and e2 ≤ 1 and |B| ≤ 3.

For suppose that s = 2. Suppose first that t ≤ 13. By (1) and (2), |A| ≥ e1 ≥ (1
2
t + 1)|B|,

and since |A| = t + 2 and t ≥ 7 by 5.1, it follows that |B| ≤ 2, and so |B| = 2 by 3.4; let
B = {b1, b2}. By (1), no vertex in A is adjacent to both b1, b2, contrary to 2.2 and 2.5. This
proves that t ≥ 14.

By (1) and (2), 2|A| ≥ e1 ≥ ⌈1
2
t⌉|B|, and since |A| = t+2 and t ≥ 9 it follows that |B| ≤ 4.

Suppose that there are three vertices b1, b2, b3 ∈ B, pairwise adjacent. Now by 2.2 there
are at least 1

2
t b1b2-joins, and so there are at least 1

2
t − 2 b1b2-joins in A. The same holds for

b1b3- and b2b3-joins, and all these vertices are different by (1). Thus at least 3(1
2
t− 2) vertices

in A have neighbours in {b1, b2, b3}, and since 3(1
2
t − 2) > t − 1 (since t ≥ 11), it follows that

G has a K2,t minor, a contradiction. Thus no three members of B are pairwise adjacent.
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Next suppose that there exist b1, b2, b3 ∈ B such that b1b2 and b2b3 are edges. There
are at least 1

2
t b1b2-joins, all in A, and the same for b2b3-joins, and they are all different by

(1), so there are at least t vertices in A with neighbours in {b1, b2, b3}, and contracting the
edges within B gives a K2,t minor, a contradiction. Thus every vertex in B has at most one
neighbour in B.

Suppose that e2 ≥ 2. Then it follows that e2 = 2 and |B| = 4, and we may assume that
b1b2 and b3b4 are edges, where B = {b1, b2, b3, b4}. There are at least 1

2
t b1b2-joins, all in A, and

the same for b3b4-joins; and at least three b1b3-joins, by 2.5. All these vertices are different,
by (1), so |A| ≥ t + 3, a contradiction. This proves that e2 ≤ 1.

Suppose that |B| = 4, and so n = t + 7. Now the sum of the degrees of the four vertices
in B is e1 + 2e2; and we have seen that e1 ≤ 2(t + 2) and e2 ≤ 1. Thus

surplus(B) ≤ (2t + 6) − 4t = 6 − 2t.

By (1) and (3), every vertex in A has degree at most t+1, and so surplus(A∪{w}) ≤ t+4. Thus
surplus(V (G)) ≤ (6− 2t) + (t + 4) = 10− t. But by 3.3, surplus(V (G)) ≥ n− t = 7 > 10− t,
a contradiction. Consequently |B| ≤ 3. This proves (5).

(6) If s = 2 then |B| = 2.

For suppose that s = 2; then 2 ≤ |B| ≤ 3 from 3.4 and (5). Suppose that |B| = 3,
B = {b1, b2, b3} say. Then n = t + 6. By (5), e2 ≤ 1.

Suppose that e2 = 1, and let b1b2 be an edge say. There are at least 1
2
t b1b2-joins in A

by 2.2, and at least 1
2
t + 1 neighbours of b3, also by 2.2, and all these vertices are different

by (1). So there are at least t + 1 vertices in A with a neighbour in B. By 2.5, some vertex
a ∈ A is adjacent to both b1, b3; so contracting the edges b1b2, b1a, b3a gives a K2,t minor, a
contradiction. This proves that e2 = 0.

Suppose that every vertex in A has a neighbour in B. Choose a b1b2-join a1 ∈ A, and a
b2b3-join a2 ∈ A. Then by contracting the edges b1a1, a1b2, b2a2, a2b3 we obtain a K2,t minor, a
contradiction. This proves that some vertex in A has no neighbour in B, and so e1 ≤ 2(t+1).
Then surplus(B) ≤ 2 − t, and so

surplus(A) ≥ t − 2 − surplus(w) + (n − t) = n − 4 = t + 2

by 3.3. By (3), every vertex in A has degree at most t+1, so all t+2 members of A have degree
t + 1. But some one of them has no neighbour in B as we already saw, and this contradicts
(3). This proves (6).

(7) s = 1, and therefore every vertex in G has degree at most t + 1, and t ≥ |B| − 1.

For suppose that s = 2, and therefore |B| = 2, by (6), and so n = t + 5. Let B = {b1, b2} say.
Let X be the set of all vertices in V (G) \ {w} with degree at least t + 1. By 3.2, X ∪ {w} is
a clique, and so X ⊆ A. By (1) and (3), every vertex in X has degree exactly t + 1, and has
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exactly t− 2 neighbours in A, and is adjacent to both b1, b2. By 3.3, |X| ≥ n− t− 2 = 3 since
surplus(w) = 2. Let a0 ∈ X, and let N be its set of neighbours in A. Let a1, a2, a3 be the three
vertices in A nonadjacent to a0. Since each of a1, a2, a3 has at least 1

2
t neighbours in A by 2.2,

there are at least 3t/2 − 6 edges between {a1, a2, a3} and N . Since 3t/2 − 6 > t − 2 = |N |
since t ≥ 9, some vertex a4 ∈ N is adjacent to two of a1, a2, a3, say to a1, a2. Choose a5 ∈ X
different from a0, a4; then a5 ∈ N , and contracting the edges wa5, a0a4 gives a K2,t minor, a
contradiction. This proves the first statement of (7). The second follows from the choice of
w. For the third, we observe from (1) that e1 ≤ 3|A| = 3(t + 1), and from (2) that e1 ≥ 3|B|,
and so |B| ≤ t + 1. This proves (7).

Let κ(B) be the number of components of B, and let A0 be the set of vertices in A with
no neighbour in B.

(8) |A0| + κ(B) ≥ 3, and for every component C of B, at most t − 2 vertices in A have
neighbours in C. (In particular, if B is connected then |A0| ≥ 3.)

For choose T ⊆ B containing exactly one vertex of each component of B. Since every two
members of T have a common neighbour in A by 2.5, it follows that there is a set S ⊆ A with
|S| ≤ |T | − 1 such that B ∪ S is connected. Since contracting all edges within B ∪ S does not
produce a K2,t minor, it follows that |A\(S∪A0)| < t. Thus t+1−(κ(B)−1)−|A0| ≤ t−1, and
this proves the first assertion. For the second, let C be a component of B. Let Y = N(C) ⊆ A,
and Z = A \ Y . By the first assertion of 4.2, |Z| < 2(t− |Y |), and since |Z| = t + 1− |Y | this
proves (8).

Let X be the set of all vertices in A with degree t + 1. Let d = 2 if t ≤ 13 and d = 3
otherwise. By (1), every vertex in A has at most d neighbours in B.

(9) |X| + e1 + 2e2 ≥ (t + 1)|B| + 1, and |X| + |A0| ≤ t + 1, and so

2e2 ≥ (t + 1)(|B| − d − 1) + (d + 1)|A0| + 1.

For since every vertex in A has degree at most t+1, it follows that surplus(A∪{w}) ≤ |X|+1.
But surplus(B) = e1 + 2e2 − t|B|, and by 3.3, surplus(V (G)) ≥ n − t = |B| + 2, so

|X| + 1 + e1 + 2e2 − t|B| ≥ |B| + 2.

This proves the first assertion. For the second, since no vertex in A has t neighbours in A by
(3), it follows that X ∩ A0 = ∅, and so |X| + |A0| ≤ t + 1. But e1 ≤ d(t + 1 − |A0|) by (1),
and so |X| + e1 ≤ (d + 1)(t + 1 − |A0|). Substituting in the first assertion, we deduce that
(d + 1)(t + 1 − |A0|) + 2e2 ≥ (t + 1)|B| + 1. This proves (9).

(10) |B| ≤ 5, and if t ≤ 13 then |B| ≤ 4.
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First suppose that t ≤ 13. By (1) and (2), 2(t+ 1) ≥ e1 ≥ ⌈1
2
t⌉|B| and so |B| ≤ 4 since t ≥ 7.

Thus we may assume that t ≥ 14. By (1) and (2), 3(t + 1) ≥ (1
2
t − 1)|B|, and it follows that

|B| ≤ 7. But (9) implies that 2e2 ≥ (t + 1)(|B| − 4) + 1 ≥ 15(|B| − 4) + 1. If |B| = 7, this
implies that 2e2 ≥ 46, a contradiction since e2 ≤ 21. If |B| = 6, this implies that 2e2 ≥ 31,
again a contradiction since e2 ≤ 15. This proves (10).

(11) |B| ≤ 4.

For suppose that |B| = 5. By (10), t ≥ 14 and so d = 3. By (9), 2e2 ≥ t+4|A0|+2 ≥ 16, and
so B is connected. Thus |A0| ≥ 3 by (8), and 2e2 ≥ t + 14 ≥ 28, which is impossible. This
proves (11).

(12) |B| ≤ 3.

For suppose that |B| = 4. By (9), 2e2 ≥ (3 − d)(t + 1) + (d + 1)|A0| + 1. If B is con-
nected then |A0| ≥ 3 by (8), and so 12 ≥ 2e2 ≥ (3 − d)(t + 1) + 3(d + 1) + 1, which is
impossible (since either d = 3, or d = 2 and t ≥ 7). Thus B is not connected, and so e2 ≤ 3.
Consequently 6 ≥ (3 − d)(t + 1) + (d + 1)|A0| + 1, and so d = 3 and therefore t ≥ 14, and
|A0| ≤ 1.

Suppose that some vertex in B has more than one neighbour in B. Since B is not connected,
it follows that B has two components C1, C2, where |C1| = 3 and |C2| = 1. At least three
vertices in A have no neighbour in C1, by (8), and so (1) implies e1 ≤ 3(t + 1) − 6. Since (9)
implies |X| + e1 + 2e2 ≥ 4t + 5, we deduce that |X| + 2e2 ≥ t + 8, which is impossible since
|X| ≤ t+1 and e2 ≤ 3. Thus G|B has maximum degree at most one, and in particular e2 ≤ 2.

Since 2e2 ≥ 4|A0|+ 1, we deduce that A0 = ∅. For every edge uv of G|B, at least two (in-
deed, at least three) vertices of A are nonadjacent to both u, v, by (8), and since no two edges
within B share an end, and every vertex in A has a neighbour in B, it follows that there are
at least 2e2 vertices in A with at most two neighbours in B. Consequently e1 ≤ 3(t+1)−2e2;
but |X|+ e1 + 2e2 ≥ 4t + 5 by (9), and so |X| ≥ t + 2, which is impossible. This proves (12).

(13) There is a dominating edge.

For suppose not; then every vertex in A has at most |B| − 1 neighbours in B, and so
e1 ≤ (t + 1 − |A0|)(|B| − 1). By (9),

t + 1 − |A0| + e1 + 2e2 ≥ |X| + e1 + 2e2 ≥ (t + 1)|B| + 1,

and so
2e2 ≥ 1 + |A0||B| ≥ 1 + |B|(3 − κ(B))

by (8). In particular, e2 > 0, and so κ(B) ≤ 2; and consequently 2e2 ≥ 1 + |B|, and therefore
|B| = 3. We deduce that 2e2 ≥ 1 + 3(3 − κ(B)); so e2 ≥ 2, and therefore κ(B) = 1, and
2e2 ≥ 1 + 3 × 2, which is impossible. This proves (13).
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(14) At most two vertices in A have more than one neighbour in B.

For since there are at least three vertices of degree t + 1 by 3.3, it is possible to choose
one such that some dominating edge is not incident with it; and so from our choice of w, there
is a dominating edge v1v2 say with v1, v2 6= w. If there is a vertex a ∈ A different from v1, v2

with at least two neighbours in B, then contracting the edges v1v2 and wa gives a K2,t minor,
a contradiction. Thus every vertex in A different from v1, v2 has at most one neighbour in B.
This proves (14).

By 3.4, we may choose distinct b1, b2 ∈ B, adjacent if possible. There are at least three
b1b2-joins by 2.5 and 2.2, and only two of them are in A by (14), and so the third is in B.
Consequently |B| = 3, and b1, b2 are adjacent (from the choice of b1, b2), and e2 = 3. By (8),
|A0| ≥ 3, and by (14), e1 ≤ t−1−|A0|+6 ≤ t+2. By (9), (t+1−|A0|)+e1+2e2 ≥ (t+1)|B|+1,
and so (t − 2) + (t + 2) + 6 ≥ 3(t + 1) + 1, a contradiction. This proves 1.1.

7 Rooted minors

Now we come to the second topic of the paper, “rooted K2,t minors”. Let us say an expansion
of H in G is a function φ with domain V (G) ∪ E(G), satisfying:

• for each vertex v of H , φ(v) is a nonnull connected subgraph of G, and the subgraphs
φ(v) (v ∈ V (H)) are pairwise vertex-disjoint

• for each edge e = uv of H , φ(e) is an edge of G with one end in V (φ(u)) and the other
in V (φ(v)).

It is easy to see that H is a minor of G if and only if there is an expansion of H in G.
Now let G be a graph, let r, r′ ∈ V (G) be distinct, and let t ≥ 0. We say that G contains

an rr′-rooted K2,t minor if there is an expansion φ of K2,t in G, such that φ(s), φ(s′) each
contain one of r, r′, where s, s′ are two nonadjacent vertices of K2,t of degree t.

The result of this section is an analogue of 1.1 for rr′-rooted K2,t minors, but it needs a little
care to formulate. In particular, if there is a cut (A1, A2, C) with |C| ≤ 1 and r, r′ ∈ A1 ∪ C,
then G contains an rr′-rooted K2,t minor if and only if G|(A1 ∪C) contains such a minor, and
therefore the number of edges within A2 ∪ C is irrelevant. Let us say that G is 2-connected
to rr′ if there is no cut (A1, A2, C) with |C| ≤ 1 and r, r′ ∈ A1 ∪ C. For t ≥ 2, define
δ(t) = 1

2
(t + 3 − 4

t+2
). We shall prove the following.

7.1 Let t ≥ 2, let G be a graph with n vertices, let r, r′ ∈ V (G) be distinct, and let G be
2-connected to r, r′. If G contains no rr′-rooted K2,t minor then

|E(G)| ≤ δ(t)(n − 1) − 1;

and for all t ≥ 2 there are infinitely many such G that attain equality.
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The proof requires several steps. First let us see the last claim, that there are infinitely
many such graphs G that attain equality. Let k ≥ 1 be an integer, and let p1- · · · -pk be a path.
Add a new vertex p0 adjacent to each of p1, . . . , pk. For 1 ≤ i ≤ k, take a set Xi of t + 1 new
vertices, and choose distinct xi, x

′

i ∈ Xi; and make every two vertices in Xi∪{pi−1, pi} adjacent
except for the pairs pi−1xi, xix

′

i and x′

ipi. This graph G has n vertices, where n = k(t+2)+1,
and has

(
1

2
(t + 2)(t + 3) − 2)k − 1 = δ(t)(n − 1) − 1

edges. Moreover, it has no p0pk-rooted K2,t minor (we leave the reader to check this, but here
is a hint: the edge p0pk is useless and can be deleted, and then pk−1 is a cutvertex.) This
proves the last claim of the theorem.

The remainder of this section is devoted to proving the first claim. Suppose it is false;
then there is a smallest graph G that is a counterexample (for some t). Moreover, if G is such
a graph, and r, r′ are nonadjacent in G, then we may add the edge rr′ and delete some other
edge, and the graph we produce is another counterexample. Thus it suffices to prove that
there is no “minimum counterexample”, where we say a 5-tuple (G, t, r, r′, n) is a minimum
counterexample if it has the following properties:

• G is a graph with n vertices, and t ≥ 2

• r, r′ ∈ V (G) are distinct and adjacent, G is 2-connected to rr′, and G contains no
rr′-rooted K2,t minor

• |E(G)| > δ(t)(n − 1) − 1

• For all t′ with 2 ≤ t′, and for every graph G′, and all distinct s, s′ ∈ V (G′), if G′ is
2-connected to ss′ and G′ contains no ss′-rooted K2,t′ minor, and |V (G′)| < |V (G)|,
then

|E(G′)| ≤ δ(t′)(|V (G′)| − 1) − 1.

We proceed to prove several statements about minimum counterexamples, that eventually
will lead to a contradiction and thereby complete the proof of 7.1. The first is:

7.2 If (G, t, r, r′, n) is a minimum counterexample then n ≥ t + 3.

Proof. Suppose that n ≤ t + 2. Since δ(t) ≥ t/2 + 1, we have |E(G)| > (t/2 + 1)(n− 1)− 1.
In particular, |E(G)| ≥ 2, since n, t ≥ 2, and therefore n ≥ 3. Let |E(G)| = n(n − 1)/2 − x
say, where x ≥ 0 is an integer. Then

n(n − 1)/2 − x > (t/2 + 1)(n − 1) − 1,

that is,
(t + 2 − n)(n − 1)/2 + x < 1;

and since n − 1 ≥ 2 and t + 2 − n, x ≥ 0, we deduce that x = 0 and n = t + 2. Consequently
G is isomorphic to the complete graph Kt+2, and therefore has an rr′-rooted K2,t minor, a
contradiction. This proves 7.2.
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A notational convention: when we produce a minor H of G by contracting some edges,
naming the vertices of H is sometimes a little awkward. Some of them may correspond to
single vertices of G, in which case it is natural to give them the same name as that vertex of
G, but some may be formed by identifying several vertices of G. In our case, when we have
two distinguished vertices r, r′, we adopt the convention that if a vertex of H is formed by
identifying r with other vertices of G, we give this vertex the name r (and the same for r′,
and we will be careful not to identify r and r′ under contraction).

Let H be a graph, and let u, v be distinct vertices of H . Let H ′ be the graph obtained
from H by adding the edge uv if u, v are nonadjacent in H , and otherwise H ′ = H . We say
that H ′ is obtained from H by adding uv.

7.3 If (G, t, r, r′, n) is a minimum counterexample then there is no 2-cut (A1, A2, C) with
r, r′ ∈ A1 ∪ C.

Proof. Suppose that there is, and choose it with A2 maximal, and let C = {c, c′}. For
i = 1, 2, let ni = |Ai| and let ei be the number of edges of G with at least one end in Ai.

Suppose first that C = {r, r′}. Since A1 6= ∅, and the graph G|(A1 ∪ C) therefore has an
rr′-rooted K2,1 minor, it follows that G|(A2∪C) has no rr′-rooted K2,t−1 minor (and so t ≥ 3).
The minimality of (G, t, r, r′, n) (applied to G|(A2∪C)) implies that e2+1 ≤ δ(t−1)(n2+1)−1.
A similar inequality holds for e1, n1, and adding the two gives

e1 + e2 + 2 ≤ δ(t − 1)(n1 + n2 + 2) − 2.

But e1+e2+1 = |E(G)| > δ(t)(n−1)−1, and n1+n2+2 = n, and so δ(t−1)n−2 > δ(t)(n−1).
Since δ(t) ≥ δ(t − 1) + 1

2
, it follows that (δ(t) − 1

2
)n − 2 > δ(t)(n − 1), that is, n + 4 < 2δ(t).

Thus
1

2
n(n − 1) ≥ |E(G)| > δ(t)(n − 1) − 1 >

1

2
(n + 4)(n − 1) − 1,

and so n ≤ 1, a contradiction. This proves that C 6= {r, r′}.
Let y = 1 if c, c′ are adjacent, and y = 0 otherwise. We claim that n2 ≥ 3. For let F

be the graph obtained from G|(A1 ∪ C) by adding cc′. Then |E(F )| = e1 + 1; but F is 2-
connected to rr′, and F has no rr′-rooted K2,t minor, so from the minimality of (G, t, r, r′, n),
e1 + 1 ≤ δ(t)(n1 + 1) − 1. But

e1 + e2 + y = |E(G)| > δ(t)(n1 + n2 + 1) − 1,

and subtracting yields e2 + y − 1 > δ(t)n2. Since y ≤ 1, we deduce that e2 > δ(t)n2. In
particular, since δ(t) ≥ 2 and n2 ≥ 1, it follows that e2 ≥ 3, and so n2 ≥ 2. Suppose that
n2 = 2. Then e2 ≤ 5, and yet e2 > 2δ(t), and so 5 > 2δ(t), that is, t = 2, and e2 = 5.
In particular both members of A2 are adjacent to both members of C; but then G has an
rr′-rooted K2,t minor, by choosing two disjoint paths between {r, r′} and C and contracting
their edges, a contradiction. This proves that n2 ≥ 3.

Let X be the set of vertices in A1 adjacent to both c, c′. Since G is 2-connected to rr′,
there are two disjoint paths P1, P2 of G|(A1 ∪ C) between {r, r′} and {c, c′}; choose them to
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contain as few members of X as possible. Let there be x vertices in X that do not belong
to P1 ∪ P2. Let H be the graph obtained from G|(A2 ∪ C) by adding cc′. Then H has no
cc′-rooted K2,t−x minor (for otherwise we could contract the edges of P1, P2 and obtain an
rr′-rooted K2,t minor in G). In particular, since A2 6= ∅ and H therefore has a cc′-rooted K2,1

minor, it follows that t − x ≥ 2. Since H is 2-connected to cc′, and |E(H)| = e2 + 1, the
minimality of (G, t, r, r′, n) implies that

e2 ≤ δ(t − x)(n2 + 1) − 2.

Let e2 = δ(t − x)(n2 + 1) − 2 − z say, where z ≥ 0. Let J be the graph obtained from G by
deleting all edges between X and c, and then contracting all edges within A2 ∪ C (note that
this graph has no parallel edges, since we deleted the edges between X and c). The maximality
of A2 implies that J is 2-connected to r, r′. (We use here that not both r, r′ belong to C.)
Since |E(J)| = e1 − |X| and |V (J)| = n1 + 1, the minimality of (G, t, r, r′, n) implies that
e1 − |X| ≤ δ(t)n1 − 1. Summing these two inequalities yields

e1 + e2 − |X| ≤ δ(t)n1 + δ(t − x)(n2 + 1) − 3 − z.

Since e1 + e2 + y = |E(G)| > δ(t)(n − 1) − 1, it follows that

δ(t)n1 + δ(t − x)(n2 + 1) − 3 − z > δ(t)(n − 1) − 1 − y − |X|,

that is,
|X| + y − z > (δ(t) − δ(t − x))(n2 + 1) + 2.

Since y ≤ 1 and δ(t) − δ(t − x) ≥ x/2, we deduce that |X| − z > x(n2 + 1)/2 + 1, and in
particular |X| − z > 2x +1 since n2 ≥ 3. Since |X| ≤ x + 2, it follows that x = 0 and |X| = 2
and z < 1.

We deduce that P1, P2 both contain members of X, and therefore r, r′ /∈ C. Let X =
{x1, x2} where xi ∈ V (Pi) for i = 1, 2. We may assume that r ∈ V (P1) and r′ ∈ V (P2);
for i = 1, 2 let Qi be the maximal subpath of Pi disjoint from C ∪ X. Suppose first that
{r, r′} 6= {x1, x2}. From the maximality of A2, there is a path of G|(A1 ∪ C) between C
and {r, r′} with no vertex in X. Consequently there is a path of G|(A1 ∪ C) between C and
V (Q1 ∪ Q2) with no vertex in X. Choose a minimal such path Q, say between c and V (Q1).
Then in Q1 ∪ Q there is a path P ′

1 between c and r, containing no vertex of X and disjoint
from V (P2) \ {c}; and in G|(V (Q2) ∪ {x2, c

′}) there is a path P ′

2 between c′ and r′, disjoint
from P ′

1. But this contradicts the choice of P1, P2.
We deduce that {r, r′} = {x1, x2}. Since G has an rr′-rooted K2,2 minor (indeed, sub-

graph), it follows that t ≥ 3. Suppose that A1 = {r, r′}. Then e1 = 5, and we recall
that e2 ≤ δ(t)(n2 + 1) − 2 (since x = 0), and so |E(G)| ≤ δ(t)(n2 + 1) + 4; and since
|E(G)| > δ(t)(n − 1) − 1 and n = n2 + 4, we deduce that

δ(t)(n2 + 1) + 4 > δ(t)(n2 + 3) − 1,
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that is, 5 > 2δ(t), which is impossible since t ≥ 3. Thus n1 > 2. From the maximality of A2,
there is therefore a path Q with nonnull interior between X and C, with interior in A1 \ X.
Let Q be c-q1- · · · -qk-r

′ say. By contracting the edges cx1, c
′x2, and all the edges of the path

q1- · · · -qk, we deduce that the graph H (defined earlier) has no cc′-rooted K2,t−1 minor; and
so e2 + 1 ≤ δ(t − 1)(n2 + 1) − 1. But e2 > δ(t)(n2 + 1) − 3 since z < 1, and so

δ(t − 1)(n2 + 1) − 2 > δ(t)(n2 + 1) − 3,

that is, 1 > (δ(t) − δ(t − 1))(n2 + 1), and since δ(t) − δ(t− 1) ≥ 1/2, this is impossible. This
proves 7.3.

7.4 If (G, t, r, r′, n) is a minimum counterexample and u, v ∈ V (G) are adjacent and {u, v} 6=
{r, r′} then |X(uv)| ≥ 1

2
(t + 1). Moreover, if u, v, w, x ∈ V (G) are pairwise adjacent, and

{u, v}, {w, x} 6= {r, r′}, then |X(uv)|+ |X(wx)| ≥ t + 2.

Proof. Let G′ be obtained from G by deleting all edges between u and X(uv), and then
contracting the edge uv. From 7.3 it follows that G′ is 2-connected to rr′; and since G′ has no
rr′-rooted K2,t minor, the minimality of (G, t, r, r′, n) implies that |E(G′)| ≤ δ(t)(n − 2) − 1.
But |E(G)| > δ(t)(n − 1) − 1, and |E(G)| − |E(G′)| = |X(uv)| + 1, and so

|X(uv)|+ 1 > δ(t) =
1

2
(t + 3 − 4/(t + 2)).

Hence |X(uv)|+ 1 ≥ 1
2
(t + 3), that is, |X(uv)| ≥ 1

2
(t + 1). This proves the first assertion.

For the second, let u, v, w, x ∈ V (G) be pairwise adjacent, and let G′′ be obtained from G
by deleting all edges between u and X(uv), and between w and X(wx), and then contracting
the edges uv and wx. From 7.3, G′′ is 2-connected to rr′, and so the minimality of (G, t, r, r′, n)
implies that |E(G′′)| ≤ δ(t)(n− 3)− 1. But |E(G)| − |E(G′′)| = |X(uv)|+ |X(wx)|+ 1 (since
the edge uw is both between u and X(uv) and between w and X(wx)); consequently

|X(uv)| + |X(wx)| + 1 > 2δ(t) ≥ t + 2,

and so |X(uv)| + |X(wx)| ≥ t + 2. This proves 7.4.

7.5 If (G, t, r, r′, n) is a minimum counterexample, then there are two paths P1, P2 between
r, r′, both with nonempty interior, and disjoint except for their ends. Consequently t ≥ 3.

Proof. Suppose not. Let G′ be the graph obtained from G by deleting the edge rr′. By
Menger’s theorem there is a cut (A1, A2, C) of G′ with r ∈ A1 and r′ ∈ A2, and with |C| ≤ 1.
By 7.3, (A1, A2 \ {r′}, C ∪{r′}) is not a cut of G, since r, r′ ∈ A1 ∪C ∪{r′}; and so A2 = {r′}.
Similarly A1 = {r}, and so |V (G)| ≤ 3, and yet |E(G)| > δ(t)(n − 1) − 1 ≥ 2n − 3 which is
impossible. This proves 7.5.
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7.6 If (G, t, r, r′, n) is a minimum counterexample, then X(rr′) 6= ∅.

Proof. Suppose that X(rr′) = ∅. Let P1, P2 be as in 7.5. We cannot choose P1, P2 to be
induced paths, since r, r′ are adjacent; but we can choose them induced except for the edge
rr′. More precisely, we may choose P1, P2 such that for i = 1, 2, every pair of vertices of Pi

that are adjacent in G are also adjacent in Pi, except for the pair rr′. If P1, P2 are chosen in
this way we say the pair P1, P2 is 1-optimal. We say the pair is 2-optimal if |V (P1)|+ |V (P2)|
is minimized over all pairs satisfying 7.5. (Thus every 2-optimal pair is also 1-optimal.)

Below, we prove several statements about a 1-optimal pair P1, P2. For i = 1, 2, let pi be
the neighbour of r in Pi, and let p′i be the neighbour of r′ in Pi.

(1) t is odd, and for every 1-optimal pair P1, P2, with p1, p2, p
′

1, p
′

2 defined as above, it fol-
lows that p1, p2 are adjacent, and p′1, p

′

2 are adjacent, and the edges rp1, rp2, r
′p′1, r

′p′2 are each
in exactly (t + 1)/2 triangles.

For by contracting all edges of P1 except rp1, and all edges of P2 except r′p′2, we do not
produce an rr′-rooted K2,t minor, and so there are at most t − 1 vertices not in V (P1 ∪ P2)
that are either rp1-joins or r′p′2-joins. Now there are at least (t + 1)/2 rp1-joins, and at most
one of them is in V (P1 ∪ P2) (namely p2, and only if p1, p2 are adjacent; here we use that
p1 /∈ X(rr′)), so at least (t− 1)/2 are not in V (P1 ∪P2). Similarly there are at least (t− 1)/2
r′p′2-joins that are not in V (P1 ∪ P2). But no rp1-join is also an r′p′2-join, since X(rr′) = ∅;
and so we have equality throughout. In particular, t is odd, and p1, p2 are adjacent, and so
are p′1, p

′

2. This proves (1).

(2) If P1, P2 is a 1-optimal pair, then P1, P2 both have at least four edges.

Since X(rr′) = ∅, it follows that P1, P2 both have at least three edges; suppose that P1

has exactly three, and its vertices are r-p1-p
′

1-r
′ in order. Let G′ be the graph obtained from

G by deleting p′1 and deleting all edges between p1 and X(rp1), and then contracting rp1.
Since t is odd and |X(rp1)| = (t + 1)/2 by (1), it follows that

|E(G′)| = |E(G)| − (t + 3)/2 − deg(p′) > δ(t)(n − 1) − (t + 5)/2 − deg(p′1).

We claim that G′ is 2-connected to rr′. For suppose not; then there is a component C of
V (G)\V (P1∪P2) such that no vertex of P1∪P2 has a neighbour in C except possibly r, p1, p

′

1.
By 7.3, both r and p′1 have neighbours in C. Consequently there is a path Q between r, r′, with
interior in (V (P1 \ p1) ∪ V (C), induced except for the edge rr′. Then Q, P2 form a 1-optimal
pair, and the neighbours of r in P2, Q are nonadjacent, contrary to (1). This proves that G′ is
2-connected to rr′. Now G′ contains no rr′-rooted K2,t−1 minor; and so from the minimality
of (G, t, r, r′, n), we deduce that |E(G′)| ≤ δ(t − 1)(n − 3) − 1, and so

δ(t)(n − 1) − (t + 5)/2 − deg(p′1) < δ(t − 1)(n − 3) − 1,
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that is,

2 deg(p′1) > n + t + 4
n − 5 − 2t

(t + 1)(t + 2)
.

Since n ≥ t + 3, it follows that

4
n − 5 − 2t

(t + 1)(t + 2)
≥ −4/(t + 1) ≥ −1,

and so 2 deg(p′1) ≥ n + t. The same holds for deg(p1), and so deg(p1) + deg(p′1) ≥ n + t.
Consequently there are at least t p1p

′

1-joins, and they all belong to V (G) \V (P1), so contract-
ing the edges rp1 and r′p′1 produces an rr′-rooted K2,t minor, a contradiction. This proves (2).

(3) If P1, P2 is a 1-optimal pair, and C is a connected subgraph of G \ V (P1 ∪ P2), and
for i = 1, 2 some vertex of the interior of Pi has a neighbour in V (C), then one of r, r′ has a
neighbour in V (C).

For suppose that r, r′ are anticomplete to V (C). Define p1, p2, p
′

1, p
′

2 as before. At most
one member of X(rp1) belongs to V (P1 ∪ P2) (namely, p2), since the pair P1, P2 is 1-optimal,
and none of them belong to V (C) since r is anticomplete to V (C). Thus by 7.4, at least
(t − 1)/2 members of X(rp1) do not belong to V (P1 ∪ P2 ∪ C). Similarly at least (t − 1)/2
members of X(r′p′2) do not belong to V (P1 ∪ P2 ∪ C). Since X(rr′) = ∅, and therefore
X(rp1) ∩ X(r′p′2) = ∅, we deduce that there are at least t − 1 members of X(rp1) ∪ X(r′p′2)
that do not belong to V (P1∪P2∪C). Consequently contracting all edges of P1∪P2 except rp1

and r′p′2 (and contracting some edges of C) produces an rr′-rooted K2,t minor, a contradiction.
This proves (3).

(4) If P1, P2 is a 2-optimal pair, then for every edge uv of P1, some member of X(uv) be-
longs to V (P2).

For suppose not. By (1) it follows that u, v 6= r, r′. We may assume that r, u, v, r′ occur
in this order in P1. Since we do not produce an rr′-rooted K2,t minor by contracting all edges
of P1∪P2 except uv and rp2, it follows that there are at most t−1 members of X(rp2)∪X(uv)
that do not belong to V (P1 ∪P2). Since V (P1 ∪P2) contains only one member of X(rp2), and
no member of X(uv), 7.4 implies that there exists w ∈ X(rp2)∩X(uv). Thus w is adjacent to
both r, v, and does not belong to P2. From the 2-optimality of the pair P1, P2, it follows that
no path between r, r′ with nonempty interior in V (P1 ∪{w}) has strictly fewer edges than P1,
and in particular r, u are adjacent. Similarly r′, v are adjacent; but then P1 has only three
edges, contrary to (2). This proves (4).

(5) If P1, P2 is a 2-optimal pair, then P1, P2 both have exactly four edges.

For by (2) they both have at least four edges; suppose that P1 has at least five, and choose
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an edge uv of P1 such that u, v are both nonadjacent to both of r, r′. We may assume that
r, u, v, r′ are in order in P1. Suppose first that some uv-join w does not belong to V (P2).
By 7.3, there is a path between w and V (P1 ∪ P2) containing neither of u, v; and so there is
a path w = q0-q1- · · · -qk say, such that q0, . . . , qk /∈ V (P1 ∪ P2), and qk is adjacent to some
y ∈ V (P1 ∪ P2) \ {u, v}. Choose such a path with k minimum. (Possibly k = 0.) It follows
that for 0 ≤ i < k, qi has no neighbour in V (P1 ∪ P2) \ {u, v}.

We claim that qk has a neighbour in V (P1) \ {u, v}, and we may therefore assume that
y ∈ V (P1). For suppose not; then y belongs to the interior of P2, and in particular r, r′ are
nonadjacent to qk. Hence r, r′ have no neighbours in {q0, . . . , qk}, contrary to (3). This proves
that we may choose y ∈ V (P1). From the symmetry we may assume that y belongs to the
subpath of P1 between r and u.

Now there is a path with nonempty interior, between r, r′, with interior contained in
(V (P1) \ {u}) ∪ {q0, . . . , qk}; choose such a path, P3 say, minimal. Thus the pair P3, P2 is 1-
optimal. Some vertex of P3 does not belong to P1, and so we may choose i ≤ k minimum such
that qi ∈ V (P3). Let C be the subgraph induced on {u, q0, . . . , qi−1}. Thus C is connected,
and disjoint from both P2, P3, and r, r′ both have no neighbours in C (since qk /∈ V (C)).
Moreover, qi belongs to the interior of P3, and has a neighbour in V (C); and by (4), some
vertex of the interior of P2 is adjacent to u and therefore has a neighbour in V (C). But this
contradicts (3) applied to C and the 1-optimal pair P2, P3.

This proves that there is no such vertex w, and so every uv-join belongs to V (P2). Since
P1, P2 is 2-optimal, it follows that every two uv-joins in V (P2) are adjacent (for otherwise we
could choose another pair of paths with smaller union), and in particular there are at most
two uv-joins. By 7.4 there are at least (t + 1)/2 uv-joins, and so t = 3, and there are exactly
two uv-joins x, y say, and x, y are adjacent members of the interior of P2. Thus u, v, x, y are
pairwise adjacent, and so by the second statement of 7.4, |X(uv)| + |X(xy)| ≥ t + 2 = 5.
Since |X(uv)| = 2, it follows that |X(xy)| ≥ 3, and so there is an xy-join z different from u, v.
But then contracting all edges of P2 except xy gives an rr′-rooted K2,3 minor, a contradiction.
This proves (5).

Now by 7.5 there is a 2-optimal pair P1, P2. By (5), P1 and P2 both have four edges; for
i = 1, 2, let Pi have vertices r-pi-qi-p

′

i-r
′ in order.

(6) deg(q1), deg(q2) ≥ (n + t − 2)/2.

For let G′ be obtained from G by deleting the edges between p1 and X(rp1), and between p′1
and x(r′p′1), and deleting q1, and contracting the edges rp1 and r′p′1. As in the proof of (2), it
follows that G′ is 2-connected to rr′. Since G′ has no rr′-rooted K2,t−1 minor, the minimality
of (G, t, r, r′, n) implies that |E(G′)| ≤ δ(t − 1)(n − 4) − 1. But

|E(G′)| = |E(G)| − |X(rp1)| − |X(r′p′1)| − 2 − deg(q1),

and by (1) |X(rp1)| = |X(r′p′1)| = (t + 1)/2. Consequently

|E(G)| − (t + 1) − 2 − deg(q1) ≤ δ(t − 1)(n − 4) − 1,
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that is, |E(G)| ≤ δ(t−1)(n−4)+ t+2+deg(q1). But |E(G)| > δ(t)(n−1)−1, and therefore

δ(t)(n − 1) − 1 < δ(t − 1)(n − 4) + t + 2 + deg(q1),

that is,

n + t − 1 + 4
n − 3t − 7

(t + 2)(t + 1)
< 2 deg(q1).

Since n ≥ t + 3, it follows that

4
n − 3t − 7

(t + 2)(t + 1)
≥ −8/(t + 1) ≥ −2,

and so n + t − 2 ≤ 2 deg(q1). This proves (6).

There are at least (t − 1)/2 r′p′2-joins that are not in V (P1 ∪ P2), and at least (t − 1)/2
rp1-joins with the same property. If all these rp1-joins are adjacent to q1, then (since p1 is
adjacent to r, q1) contracting the edges q1p

′

1, p
′

1r
′, rp2, p2q2, q2p

′

2 yields an rr′-rooted K2,t minor,
a contradiction. We deduce that some rp1-join s1 say is not in V (P1 ∪P2) and is not adjacent
to q1. Similarly some r′p′2-join s2 is not in V (P1 ∪ P2) and is nonadjacent to q2.

Let X1 = X(q1q2) \ V (P1 ∪ P2), and X2 = X(q1q2) ∩ V (P1 ∪ P2). Let Z be the set of
all vertices different from r, r′ that are nonadjacent to both q1, q2 (with q1, q2 ∈ Z if q1, q2

are nonadjacent). Let A1 = {r, p1, q1} and A2 = {r′, p′2, q2}. Let B be the set of all vertices
not in V (P1 ∪ P2) ∪ X1 with a neighbour in A1 and a neighbour in A2. Since G does not
contain an rr′-rooted K2,t minor obtained by contracting the edges of G|A1 and G|A2, and
since every vertex in B ∪ X1 ∪ {p′1, p2} has a neighbour in A1 and one in A2, it follows that
|B| ≤ t − 3 − |X1|.

Now if s1 is nonadjacent to q2 then s1 ∈ Z, and if s1 is adjacent to q2 then s1 ∈ B, and
similarly s2 belongs to one of Z, B1. Since s1 6= s2, we deduce that |B|+ |Z| ≥ 2, and therefore
2 − |Z| ≤ t − 3 − |X1|, that is, |X1| ≤ |Z| + t − 5. Since X2 ⊆ {p1, p

′

1, p2, p
′

2} and therefore
|X2| ≤ 4, it follows that |X(q1q2)| = |X1| + |X2| ≤ |Z| + t − 1. But

|X(q1q2)| + (n − |Z| − 2) = deg(q1) + deg(q2),

and so deg(q1) + deg(q2) ≤ n + t − 3, contrary to (6). This proves 7.6.

7.7 If (G, t, r, r′, n) is a minimum counterexample, then there is exactly one rr′-join x, and
deg(x) > δ(t) + (δ(t) − δ(t − 1))(n − 2).

Proof. By 7.6 there is an rr′-join x. We prove first that deg(x) > δ(t)+(δ(t)−δ(t−1))(n−2).
For let G′ be obtained from G by deleting x. By 7.3, G′ is 2-connected to rr′, and has no
rr′-rooted K2,t−1 minor (for otherwise this could be extended to an rr′-rooted K2,t minor in
G, using x). From the minimality of (G, t, r, r′, n), |E(G′)| ≤ δ(t−1)(n−2)−1. But |E(G)| >
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δ(t)(n− 1)− 1, and |E(G)| − |E(G′)| = deg(v), and so deg(x) > δ(t)(n− 1)− δ(t− 1)(n− 2).
This proves the claim.

Now suppose that y is another rr′-join. If there are t vertices different from x, y, r, r′

and adjacent to both x, y, then contracting the edges rx, r′y gives an rr′-rooted K2,t minor, a
contradiction. Thus there are at most t−1 such vertices, and hence deg(x)+deg(y) ≤ 6+(n−
4)+ (t− 1) = n+ t+1. But we have seen that deg(x), deg(y) > δ(t)+ (δ(t)− δ(t− 1))(n− 2),
and so 2δ(t) + 2(δ(t)− δ(t− 1))(n− 2) < n + t + 1, which on substituting the expressions for
δ(t) and δ(t − 1) simplifies down to n < t + 3, a contradiction. This proves 7.7.

In view of 7.7, it remains to handle the case when |X(rr′)| = 1. This will take several more
lemmas, but first let us set up some notation. In what follows in this section, (G, t, r, r′, n) is
a minimum counterexample; there is a unique rr′-join x; and N, N ′ are the sets of vertices in
V (G)\{x, r, r′} adjacent to r, r′ respectively. (Since X(rr′) = {x}, it follows that N∩N ′ = ∅.)
Let W = V (G) \ (N ∪N ′ ∪ {x, r, r′}). We fix p ∈ N and p′ ∈ N ′ and a path P , such that P is
between p, p′ and its interior is a subset of W . (This is possible by 7.5.) We partition N \ {p}
into four sets A, B, C, D as follows. A vertex in N \ {p} belongs to A ∪ C if and only if it is
adjacent to p, and it belongs to B ∪C if and only if it is adjacent to x. (Thus, A is the set of
vertices in N \ {p} adjacent to p and not to x, and so on.) We define A′, B′, C ′, D′ similarly
with r, r′ exchanged. Let e = 1 if x, p are adjacent, and e = 0 otherwise; and let e′ = 1 if x, p′

are adjacent, and e′ = 0 otherwise.

7.8 The following inequalities hold:

|A| + |C| + |B′| + |C ′| ≤ t − 1;

|A′| + |C ′| + |B| + |C| ≤ t − 1;

(t + 1)/2 − e ≤ |A| + |C| ≤ (t − 1)/2 + e′;

(t + 1)/2 − e′ ≤ |A′| + |C ′| ≤ (t − 1)/2 + e;

(t − 1)/2 − e ≤ |B| + |C| ≤ (t − 3)/2 + e′;

(t − 1)/2 − e′ ≤ |B′| + |C ′| ≤ (t − 3)/2 + e.

Proof. Since contracting rx, r′p′ and all edges of P does not produce an rr′-rooted K2,t minor,
the first statement holds, and the second follows by exchanging r, r′. The four remaining lower
bounds are consequences of 7.4 applied to the edges rp, r′p′, rx, r′x; and the upper bounds
follow from these and the first two statements. This proves 7.8.

7.9 If a ∈ A has no neighbour in N ′, then there is an integer h ≥ (t + 1)/2 and disjoint
subsets X1, X2, . . . , Xh, Y1, Y2 ⊆ V (G) \ (N ′ ∪ {r′, x}), satisfying:

• each of X1, . . . , Xh, Y1, Y2 induces a connected subgraph of G
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• r ∈ Y1, p ∈ Y2

• for 1 ≤ i ≤ h there is an edge of G between Xi and Y1, and an edge of G between Xi

and Y2, and

• every vertex of each of X1, . . . , Xh, Y1, Y2 either belongs to N ∪ {r} or is adjacent to a.

Proof. If |A∪C| ≥ (t + 1)/2, we may take h = |A∪C|, and let X1, . . . , Xh be the singleton
subsets of A ∪ C, and Y1 = {r} and Y2 = {p}. Thus we may assume that |A ∪ C| ≤ t/2. By
7.8, |A∪C| ≥ (t + 1)/2− e, and so e = 1 (that is, x, p are adjacent) and |A∪C| ≥ (t− 1)/2.
Let h = |A∪C|+1, and for 3 ≤ i ≤ h let Xi be a singleton subset of C ∪ (A\{a}). It remains
to select X1, X2, Y1 and Y2, and we do this as follows. If a has two neighbours w1, w2 ∈ B∪D,
we may take X1 = {w1}, X2 = {w2}, Y1 = {r}, and Y2 = {p, a}. Thus we may assume that a
has at most one neighbour in B∪D. Now |X(ar)| ≥ (t+1)/2 by 7.4, and since |A∪C| ≤ t/2,
it follows that a has a unique neighbour in B ∪ D, say u1. Choose a sequence u1, . . . , uk of
distinct vertices, maximal with the following properties (where u0 = r):

• u2, . . . , uk ∈ W ,

• u1- · · · -uk is a path, and a is adjacent to all of u1, . . . , uk

• p is nonadjacent to all of u1, . . . , uk, and

• for 1 ≤ i ≤ k − 1, X(aui) ⊆ {ui−1, ui+1} ∪ A ∪ C.

Now |X(auk)| ≥ (t + 1)/2 by 7.4. Since |A ∪ C| ≤ t/2, it follows that there is a vertex
uk+1 /∈ A∪C ∪ {uk−1, uk} such that a, uk, uk+1 are pairwise adjacent. Since uk is nonadjacent
to p, and a is nonadjacent to x and has no neighbour in N ′ ∪ {r′}, it follows that uk+1 /∈
N ′ ∪ {r′, x}. Suppose that uk+1 ∈ {u0, . . . , uk}, and let uk+1 = ui where 0 ≤ i ≤ k. Then
i ≤ k − 2 (since uk+1 6= uk−1, uk), and so k ≥ 2 and therefore uk /∈ N , and so i > 0.
Consequently X(aui) ⊆ {ui−1, ui+1} ∪ A ∪ C, which is impossible since uk ∈ X(aui). Thus
uk+1 6= u0, . . . , uk. Since uk+1 6= u1, and u1 is the unique neighbour of a in B ∪ D, it follows
that uk+1 /∈ B ∪ D, and so uk /∈ N . From the maximality of the sequence u1, . . . , uk, we
deduce that either p is adjacent to uk+1, or X(auk) 6⊆ {uk−1, uk+1} ∪A ∪C. In the first case,
we may take X1 = {a}, X2 = {u1, . . . , uk, uk+1}, Y1 = {r}, and Y2 = {p}. In the second case,
let w ∈ X(auk) with w /∈ {uk−1, uk+1} ∪ A ∪ C; then we may take X1 = {uk+1}, X2 = {w},
Y1 = {r, u1, . . . , uk} and Y2 = {p, a}. This proves 7.9.

7.10 x is adjacent to both p, p′.

Proof. For suppose there is some choice of P, p, p′ such that x is nonadjacent to one of p, p′;
and choose such P, p, p′ with P of minimum length. Let x, p′ be nonadjacent, say. By 7.8, x
is adjacent to p, and |A| + |C| = (t − 1)/2, |A′| + |C ′| = (t + 1)/2, |B| + |C| = (t − 3)/2, and
|B′|+ |C ′| = (t− 1)/2. In particular, since |A|+ |C| > |B|+ |C|, it follows that A 6= ∅; choose
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a ∈ A. It follows that a has no neighbour in P different from p, since otherwise we could
choose a new path P ′ between a and p′, and this is impossible by 7.8 since x is nonadjacent
to both a, p′.

Suppose that a ∈ A has no neighbour in N ′. Since |X(xr′)| ≥ (t + 1)/2 by 7.4, and
X(xr′) ⊆ N ′ ∪ {r}, there are at least (t − 1)/2 xr′-joins in N ′, and none of them is in P .
Moreover, since no vertex of P belongs to N or is adjacent to a except p, 7.9 implies that
contracting rx, p′r′ and the edges of P (and the edges of the h + 2 subgraphs given by 7.9)
yields an rr′-rooted K2,t minor, a contradiction.

Thus there exists a′ ∈ N ′ adjacent to a. Since a has no neighbour in P different from
p, it follows that a, p′ are nonadjacent, and in particular a′ 6= p′. The path a-a′ satisfies our
hypotheses for the choice of P , and so from the minimality of the length of P , we deduce
that P has only one edge, and so p, p′ are adjacent. From 7.8, x is adjacent to a′. Now
|A′ ∪ C ′| = (t + 1)/2 as we already saw, and so there are at least (t − 1)/2 vertices not
in {x, r, r′, p, p′, a, a′} and adjacent to both p′, r′; and similarly there are at least (t − 1)/2
such vertices adjacent to both a, r. But then contracting the edges rp, pp′, aa′, a′r′ gives an
rr′-rooted K2,t minor, a contradiction. This proves 7.10.

7.11 P has length at least two.

Proof. Suppose not; then p, p′ are adjacent. Suppose there is a 3-cut (L, M, {r, p, p′}), where
x, r′ ∈ M . Then there is a path between r and p′ with interior in L, by 7.3, and x has no
neighbour in the interior of this path; and hence there is a choice of P, p, p′ that violates 7.10,
a contradiction. Thus there is no such 3-cut. Let G′ be the graph obtained from G by deleting
all edges between p and X(pr), deleting the vertex p′, and contracting pr. It follows that G′

is 2-connected to rr′.
Now G′ has no rr′-rooted K2,t−1 minor, and so from the minimality of (G, t, r, r′, n), it

follows that |E(G′)| ≤ δ(t − 1)(n − 3) − 1. But |E(G)| − |E(G′)| = deg(p′) + |A| + |C| + 2,
and |C| ≤ |B| + |C| ≤ (t − 1)/2 by 7.8, and so

|E(G)| ≤ δ(t − 1)(n − 3) + deg(p′) + |A| + (t + 1)/2.

Since |E(G)| > δ(t)(n − 1) − 1, we deduce that

δ(t)(n − 1) − 1 < δ(t − 1)(n − 3) + deg(p′) + |A| + (t + 1)/2,

and so
deg(p′) > 2δ(t) + (δ(t) − δ(t − 1))(n − 3) − |A| − (t + 3)/2.

But since contracting the edges rx, p′r′ does not produce an rr′-rooted K2,t minor, it follows
that x, p′ have at most t−2 common neighbours that are not in V (P )∪{x, r, r′}, and therefore
at most t common neighbours in total. Since every vertex in A is nonadjacent to x (by
definition) and to p′ (by 7.10), it follows that deg(p′) + deg(x) ≤ n − |A| + t. But from 7.7,
deg(x) > δ(t) + (δ(t) − δ(t − 1))(n − 2); and so

2δ(t)+ (δ(t)− δ(t− 1))(n− 3)− |A| − (t + 3)/2+ δ(t) + (δ(t)− δ(t− 1))(n− 2)) < n− |A|+ t,
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which simplifies to
(t − 3)(t + 2) + 8(n − t − 3) < 0,

a contradiction. This proves 7.11.

7.12 A, A′ are both nonempty.

Proof. Suppose that A′ = ∅, say. By 7.8, |A′|+ |C ′| ≥ (t− 1)/2, and |B′|+ |C ′| ≤ (t− 1)/2;
so t is odd, |C ′| = (t − 1)/2, and B′ = ∅. If there exists a ∈ A, then (since a is anticomplete
to N ′ ∪ (V (P ) \ {p}) by 7.10), 7.9 implies that contracting the edges rx, p′r′ and all edges
of P (and the edges of the subgraphs provided by 7.9) yields an rr′-rooted K2,t minor, a
contradiction. Thus A = ∅, and so similarly B = ∅ and |C| = (t − 1)/2.

If every member of C has a neighbour in V (P \ p), then we may obtain an rr′-rooted K2,t

minor by contracting rx, r′p′ and all edges of P \ p, a contradiction. Thus there exists c ∈ C
with no neighbour in V (P \ p). Now |X(rp)| = (t + 1)/2, and since r, p, x, c are pairwise
adjacent, 7.4 implies that |X(cx)| ≥ (t + 3)/2. Hence there is a vertex u1 /∈ C ∪ {p, r}
and adjacent to c, x. Since u1 /∈ C and B = ∅, it follows that r, u1 are nonadjacent, and
so u1 /∈ N ; and since N is anticomplete to N ′ by 7.11, it follows that u1 ∈ W . We claim
that X(cx) ⊆ C ∪ {p, r, u1}; for if not, there is a second vertex u′

1 that satisfies the defining
condition for u1, and then contracting the edges rx, r′p′, pc and all edges of P gives an rr′-
rooted K2,t minor, a contradiction. Let u0 = x, and choose a maximal sequence u1, . . . , uk of
distinct members of W with the following properties:

• u1- · · · -uk is a path, and c is adjacent to all of u1, . . . , uk, and

• for 1 ≤ i < k, X(cui) ⊆ C ∪ {ui−1, ui+1}.

Now by 7.4, |X(cuk)| ≥ (t + 1)/2, and so there exists a vertex uk+1 6= uk−1, uk such that
uk /∈ C. If uk+1 ∈ V (P ), then contracting rx, r′p′, all edges of P , and the edges of the path
u2- · · · -uk+1 gives an rr′-rooted K2,t minor, a contradiction. If uk+1 ∈ D, then contracting
rp, r′x, all edges of P , and the edges of the path x-u1- · · · -uk gives an rr′-rooted K2,t minor.
Moreover, uk+1 /∈ N ′, since c is anticomplete to N ′; and so uk+1 ∈ W ∪ {x}. Suppose that
uk+1 = ui for some i ∈ {0, . . . , k}; then i ≤ k − 2, and so k ≥ 2, and uk ∈ X(cui). But
X(cu0) ⊆ C ∪ {p, r, u1}, so i 6= 0; hence X(cui) ⊆ C ∪ {ui−1, ui+1}, a contradiction. Thus
uk+1 ∈ W and is different from u0, . . . , uk. From the maximality of the sequence u1, . . . , uk,
it follows that X(cuk) 6⊆ C ∪ {uk−1, uk+1}, and so there is a vertex w adjacent to c, uk and
not in C ∪ {uk−1, uk+1}. Thus w satisfies the defining conditions for uk+1, and so by the same
argument w ∈ W and is different from u0, . . . , uk. But then contracting rx, r′p′, pc, all edges
of P , and all edges of the path x-u1- · · · -uk gives an rr′-rooted K2,t minor, a contradiction.
This proves 7.12.
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Now we complete the proof of the second main result.

Proof of 7.1 We may assume that P is an induced path. Let q be the neighbour of p in P .
By 7.12, both A, A′ are nonempty. Choose a′ ∈ A′. Since a′ is anticomplete to N by 7.10,
7.9 (with r, r′ exchanged) yields that there is an integer h ≥ (t + 1)/2 and disjoint subsets
X1, X2, . . . , Xh, Y1, Y2 ⊆ V (G) \ (N ∪ {r, x}), satisfying:

• each of X1, . . . , Xh, Y1, Y2 induces a connected subgraph of G

• r′ ∈ Y1, p
′ ∈ Y2

• for 1 ≤ i ≤ h there is an edge of G between Xi and Y1, and an edge of G between Xi

and Y2, and

• every vertex of each of X1, . . . , Xh, Y1, Y2 either belongs to N ′ ∪{r′} or is adjacent to a′.

It follows that all these subsets are disjoint from V (P ) except that p′ ∈ Y2, by 7.10. Let F
be the union of the edge sets of X1, X2, . . . , Xh, Y1, Y2. By contracting rp, all edges of P , and
all edges of F , it follows that (t + 3)/2 ≤ t− 1, and so t ≥ 5. By contracting rp, r′x, all edges
of P , and all edges of F , we deduce that |B ∪ C| ≤ (t − 3)/2, and so equality holds, by 7.8.
Moreover, the same contraction shows that every vertex in X(xp) belongs to C, except for r
and possibly q; and so |C| = (t− 3)/2 and B = ∅ and |X(xp)| = (t + 1)/2. Since t ≥ 4, there
exists c ∈ C. Now c, p, r, x are pairwise adjacent, and so 7.4 implies that |X(rc)| ≥ (t + 3)/2.
Since |B ∪C| = (t− 3)/2, there are at least two members of X(rc) not in B ∪C ∪ {x, p}, say
w1, w2; thus w1, w2 ∈ A ∪ D. In particular, w1, w2 /∈ V (P ), and so contracting rp, r′x, xc, all
edges of P , and all edges of F produces an rr′-rooted K2,t minor, a contradiction. Thus there
is no minimum counterexample (G, t, r, r′, n). This completes the proof of 7.1.

8 Higher connectivity

If we add to 1.1 the hypothesis that G is k-connected, we should expect a change in the
extremal function (depending on k), and in this section we study this. First, a result of
G. Ding (private communication):

8.1 For every t ≥ 0, there exists n(t) ≥ 0 such that every 5-connected graph with no K2,t

minor has at most n(t) vertices.

If we replace 5-connected by 4-connected, this is no longer true. For instance, let n be
even, n = 2m say, and let G be the graph with n vertices u1, . . . , um, v1, . . . , vm, in which for
1 ≤ i ≤ m, ui, vi are adjacent, and {ui, vi} is complete to {ui+1, vi+1} (where um+1, vm+1 mean
u1, v1) and with no other edges. Then G is 4-connected and has no K2,5 minor. Note that in
this graph, every vertex has degree 5, and so |E(G)| = 5n/2. This shows that the next result
is also best possible in a sense. The next result was proved in joint work with Sergey Norin
and Robin Thomas, and is more or less an analogue of 1.2.
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8.2 For every t ≥ 0, there exists c(t) ≥ 0 such that every 3-connected n-vertex graph with no
K2,t minor has at most 5n/2 + c(t) edges.

Proof. The proof is a fairly standard “bounded treewidth” argument, using the methods
of [8], and so we just sketch it. Let G be a 3-connected graph with no K2,t minor. We prove
by induction on |V (G)| that |E(G)| ≤ 5n/2 + c(t), where n = |V (G)| and c(t) is a large
constant.

A tree-decomposition of G is a pair (T, (Xs : s ∈ V (T ))), where T is a tree and each Xs is
a subset of V (G), satisfying:

• ⋃
s∈V (T ) = V (G), and for every edge uv of G there exists s ∈ V (T ) with u, v ∈ Xs

• for all s1, s2, s3 ∈ V (T ), if s2 belongs to the path of T between s1, s3, then Xs1
∩ Xs3

⊆
Xs2

.

Let us say that a tree-decomposition (T, (Xs : s ∈ V (T ))) is proper if

• for every leaf s of T (that is, a vertex with degree one in T ) there is a vertex v ∈ Xs

such that v /∈ Xs′ for all s′ ∈ V (T ) \ {s},

• Xs 6= X ′

s for every edge ss′ of T , and

• for every edge f ∈ E(T ), if S is the vertex set of a component of T \ f , then ∪s∈SXs is
connected.

We define the order of an edge ss′ of T to be |Xs ∩ Xs′|. Let us say (T, (Xs : s ∈ V (T )))
is linked if it is proper, and for every two distinct vertices s1, s2 ∈ V (T ), and every integer
k ≥ 0, either

• there are k vertex-disjoint paths in G between Xs1
and Xs2

, or

• there is an edge of the path of T between s1, s2 with order less than k.

Finally, we say a tree-decomposition (T, (Xs : s ∈ V (T ))) is a path-decomposition if T is a
path.

Since K2,t is planar, it follows from the main theorem of [10] that there is a number c1

(depending on t, but independent of G) such that G admits a tree-decomposition (T, (Xs :
s ∈ V (T ))) with |Xs| ≤ c1 for all s ∈ V (T ). From a theorem of Thomas [11] we may choose
this tree-decomposition so that in addition it is linked. If some vertex s of T has degree more
than (t−1)c1(c1 −1)/2, then G \Xs has more than (t−1)c1(c1 −1)/2 components, each with
at least two attachments in Xt (indeed, with at least three, since G is 3-connected); so some
t of them share the same two attachment vertices, and G has a K2,t minor, a contradiction.
Thus the maximum degree in T is bounded.

On the other hand, by choosing the constant c(t) in the theorem large enough, we can
ensure that |V (G)| is at least any desired function of t, and so |V (T )| is large; and consequently
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standard tree-decomposition methods yield a linked path-decomposition of G, (P, (Yi : i ∈
V (P ))) say, where P has vertices 0, 1, . . . , m in order, say, such that m is large (at least some
large function of t) and all the sets Yi ∩ Yi+1 have the same size k say, where 3 ≤ k ≤ c1.
(The sets Yi may have unbounded cardinality.) The linkedness of this decomposition provides
disjoint paths P1, . . . , Pk from Y0 to Ym, and we may choose them with total length minimum.
For 1 ≤ i ≤ m each Pj has a unique vertex in Yi−1 ∩ Yi. Let Gi be the subgraph G|Yi.

Let I1 be the set of all i ∈ {1, . . . , m−1} such that some vertex of Yi is not in V (P1∪· · ·∪Pk).
For each i ∈ I1, there is a component C of Gi \ (P1 ∪ · · · ∪ Pk), and at least one of P1, . . . , Pk

contains an attachment of C; and by rerouting the portions of P1, . . . , Pk within Gi (using
the 3-connectivity of G) we can arrange that at least two of P1, . . . , Pk contain attachments
of some such C. By contracting the edges of (the rerouted) P1, . . . , Pk, since G has no K2,t

minor, we deduce that |I1| is at most some function of t.
Since m is at least some (much bigger) function of t, there is a large subpath of P containing

no member of I1; and so we may assume that I1 = ∅, by replacing P by this subpath and
adjusting the constants accordingly.

Now either P1 contains an edge of only a bounded number of G1, . . . , Gm−1 (at most an
appropriate function of t) or it does not. In the first case we can find a large subpath of P
such that all the graphs Gi for i in this subpath contain no edge of P1; and in this case we
may replace P by this subpath. In the second case, we may group the terms of the path-
decomposition so that P1 has an edge in every group (indeed, at least two edges in every
group), and so obtain a new linked path-decomposition such that P1 has at least two edges in
every term. By repeating this for all Pj, we may assume that for 1 ≤ j ≤ k, if Pj has positive
length then Pj has at least two edges in each Gi.

Let I2 be the set of all i ∈ {1, . . . , m−1} such that for some j ∈ {1, . . . , k}, Pj has positive
length and there are at least two values of j′ 6= j such that there is an edge of Gi between
V (Pj) and V (Pj′). For each i ∈ I2, there are only k3 possibilities for the value of j and the
two values of j′, so there are at least |I2|/k3 values of i ∈ I2 giving the same triple, say j = 1
and the j′ values are 2, 3. By taking every second one of these, we arrange that the subpaths
of P1 in these various Gi are vertex-disjoint; and then by contracting the edges of P2, P3, and
using that G has no K2,t minor, we deduce that |I2| ≤ 2k3(t − 1). Thus |I2| is bounded, and
so by replacing P by a large subpath, we may assume that I2 = ∅.

Now some Pi has positive length, say P1. Then the intersection of P1 with each Gi has
length at least two, and therefore has an internal vertex vi say. Since G is 3-connected and
so vi has degree at least three, vi has a neighbour ui different from its two neighbours in P1.
Since every neighbour of vi in G belongs to Yi, and P1 is induced, and I1 = ∅, there exists
j(i) ∈ {2, . . . , k} such that ui ∈ V (Pj(i) ∩Gi). Since i /∈ I2, it follows that j(i) is independent
of the choice of vi; and so every internal vertex of P1 ∩ Gi has a neighbour in Pj(i) ∩ Gi, and
has no neighbour in Ph ∩ Gi for 1 ≤ h ≤ k with h 6= 1, j(i). Suppose that there is a large
number (at least a large function of t) of i ∈ {1, . . . , m−2} such that j(i) 6= j(i+1). Then we
may group some of the terms of our path-decomposition into pairs, and obtain a new linked
path-decomposition in which |I2| is large, and obtain a K2,t minor, a contradiction. Thus
there are only a bounded number of i ∈ {1, . . . , m − 2} such that j(i) 6= j(i + 1); and so we
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may replace P by a large subpath and assume that j(i) is the same for all i. Since I2 = ∅, we
may assume that every internal vertex of P1 has neighbours in P2, and has no neighbours in
any Ph for 3 ≤ h ≤ k. We repeat the same for P2; thus, we may assume that every internal
vertex of P2 has neighbours in P1, and has no neighbours in any Ph for 3 ≤ h ≤ k. (Possible
P2 has zero length, however, in which case this statement is vacuous.)

We recall that for 1 ≤ i ≤ m − 1, P1 ∩ Gi has at least two edges, and hence at least one
internal vertex. We may arrange that m ≥ 5. Let the vertices of P1 ∩ G3 be p1, . . . , ps in
order, where p1 ∈ Y2 ∩ Y3 and ps ∈ Y3 ∩ Y4. Since m ≥ 5, it follows that p1, . . . , ps have
no neighbours in Y0 ∪ Ym (except possibly the vertex of P2 if P2 has length zero). Let p0 be
the neighbour of p1 in P1 different from p2, and define ps+1 similarly. Thus p0 is an internal
vertex of G2, and ps+1 of G4. Let h ∈ {1, . . . , s − 1}, and let u = ph and v = ph+1. Let
X = V (P2 ∩ (G2 ∪G3 ∪G4)). Every neighbour of ph is in {ph−1} ∪X, and every neighbour of
v is in X ∪ {ph+2}. Suppose that for some vertex w of G, G admits a 3-cut (A, B, {u, v, w}).
Since G is 3-connected, both u, v have neighbours in both A, B, and so both A, B meet the
connected sets {ph−1} ∪ X and X ∪ {ph+2}. Consequently w ∈ X. It follows that P2 has
positive length, and w belongs to the interior of P2. Hence w /∈ Y0 ∪ Ym; but Y0, Ym are
both connected (since the path-decomposition is proper), and so G \ {u, v, w} is connected, a
contradiction. Thus there is no such 3-cut, and so the graph obtained by contracting the edge
uv is 3-connected (and this is true for every edge of P1 ∩G3). Consequently there are at least
two uv-joins w1, w2 say, since otherwise contracting uv would give a smaller counterexample.
It follows that w1, w2 ∈ V (P2∩G3), and so P2 has nonzero length. From the minimality of the
union of P1, . . . , Pk, we deduce that w1, w2 are adjacent in P2 ∩ G3. In particular, there are
exactly two uv-joins, and similarly exactly two w1w2-joins. But then contracting the edges
uv and w1w2 gives a smaller counterexample. (Here is where the number 5/2 appears.) This
proves 8.2.

We can apply 8.2 to the 2-connected case, and prove the following. (The idea of this proof
is due to A. Kostochka, and he kindly gave us permission to include it here.) We recall that
δ(s) = 1

2
(s + 3 − 4/(s + 2)).

8.3 Let t ≥ 0 be odd, t = 2s − 1 say, and let c(t) be as in 8.2. Then every 2-connected
n-vertex graph with no K2,t minor has at most δ(s)n + c(t) edges.

Proof. We proceed by induction on n. The result is easy for t ≤ 3, so we may assume that
t ≥ 5, and s ≥ 3. If G is 3-connected, the claim follows from 8.2, so we may assume that
G admits a 2-cut (A1, A2, {r1, r2}) say. For i = 1, 2, let |Ai| = ni, and let there be ei edges
with an end in Ai. For i = 1, 2, let Gi be the graph obtained from G|(Ai ∪{r1, r2}) by adding
the edge r1r2; and choose si minimum such that Gi has no r1r2-rooted K2,si

minor. Thus
2 ≤ si ≤ ni + 1. We assume for a contradiction that e1 + e2 + 1 > δ(s)(n1 + n2 + 2) + c(t).

(1) For i = 1, 2, ei ≤ δ(si)(ni + 1) − 2, and ei > δ(s)ni.

The first claim follows from 7.1 applied to Gi. From the inductive hypothesis applied to
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the 2-connected graph Gi, we deduce that ei ≤ δ(s)(ni + 2) + c(t) − 1 for i = 1, 2, and since
e1 + e2 + 1 > δ(s)(n1 + n2 + 2) + c(t), subtracting yields the second claim. This proves (1).

(2) One of s1, s2 > s, and s1 + s2 ≤ t + 1.

If s1, s2 ≤ s, then summing the first inequalities of (1) for i = 1, 2 yields

|E(G)| ≤ e1 + e2 + 1 ≤ δ(s)(n1 + n2 + 2) − 3,

a contradiction; so one of s1, s2 > s, and this proves the first claim. Since for i = 1, 2, Gi

has an r1r2-rooted K2,si−1 minor, and yet combining these does not give a K2,t minor of G, it
follows that (s1 − 1) + (s2 − 1) ≤ t − 1. This proves the second claim, and so proves (2).

In view of (2) we assume henceforth that s1 > s, and therefore s2 < t + 1 − s = s. Since
e2 ≤ (n2 + 2)(n2 + 1)/2 − 1, and (1) implies that e2 > δ(s)n2, it follows that

δ(s)n2 < (n2 + 2)(n2 + 1)/2 − 1,

that is, s−4/(s+2) < n2, and so n2 ≥ s. The inequalities of (1) yield δ(s)n2 < δ(s2)(n2+1)−2,
that is,

δ(s) > (δ(s) − δ(s2))(n2 + 1) + 2.

But δ(s) ≤ (s + 3)/2, and δ(s) − δ(s2) ≥ (s − s2)/2 ≥ 1/2, and n2 ≥ s, and we deduce that
(s + 3)/2 > (s + 1)/2 + 2, a contradiction. This proves 8.3.

This result is best possible except for the constant c(t), since there is a 2-connected n-
vertex graph with no K2,t minor with δ(s)n − 3 edges. (To see this, take two copies of the
graph defined after the statement of 7.1, with t replaced by s, and identify the roots of the
first with those of the second.) We have confined ourself to the case when t is odd because
the even case seems to be more difficult.
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