
OPEN PROBLEMS

1 Notation

Throughout, v(G) and e(G) mean the number of vertices and edges of a graph G, and ω(G) and
χ(G) denote the maximum cardinality of a clique of G and the chromatic number of G.

2 Sergey Norin

Let H be a fixed graph. The notation H ≤ G means H is a minor of G. We define

c(H) = sup
H 6≤G

e(G)/v(G)

and
c∞(H) = lim

n→∞
sup

H 6≤G;v(G)≥n
e(G)/v(G).

If H is connected, then c(H) = c∞(H) because any extremal example can be replicated to include
arbitrarily many vertices. However, c(H) need not equal c∞(H) if H is not connected. For example,
using the notation sH to denote s disjoint copies of H, we have

c(sK1,r) = s(r + 1)/2 − 1

but
c∞(sK1,r) = (r − 1)/2 + s − 1.

2.1. Question: If H has no isolated vertices, is c∞(H) = Ω(
√

c(H))?

Also, Reed and Wood proposed

2.2. Conjecture: If H is 2-regular, then c(H) ≤ 2v(H)/3 − 1.

Norin and Qian proved:

2.3. Theorem: Let H1 and H2 be graphs, and H1 ⊔ H2 be their disjoint union. Then

c∞(H1 ⊔ H2) ≤ c∞(H1) + c∞(H2) + 1.

Consequently, if H is 2-regular, then c∞(H) ≤ v(H)/2 + c(H)/2 − 1.

2.4. Question: With H1,H2 as before, is it true that

c(H1 ⊔ H2) ≤ c(H1) + c(H2) + 1?
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3 Peter Keevash

A triangle decomposition of G means a partition of E(G) into triangles. Nash-Williams proposed:

3.1. Conjecture: Let G be a graph with all vertices of even degree, 3 | e(G), and δ(G) ≥ 3v(G)/4.
Then G has a triangle decomposition.

Notice that 3v(G)/4 is tight because if G1 and G2 are graphs with n vertices and maximum
degree less than n/2, the complete join of G1 and G2 does not have a triangle decomposition.

The conjecture can be adapted to edge weights:

3.2. Question: Let G be a graph with weight function w : E(G) → R (weights may be negative) such
that

∑

e∈E(G) w(e) > 0. When must there be a triangle T with positive total weight?

There are some clear examples answering the question affirmatively and negatively. If G = Kn,
then the positive overall weight condition implies that the average weight of triangles is positive, so a
positive-weight triangle exists. Conversely, if G is triangle-free, then there are certainly no positive-
weight triangles. Analogous to the Nash-Williams conjecture, maybe a bound on the minimum
degree is sufficient to guarantee a positive-weight triangle:

3.3. Question: For what values of c does δ(G) ≥ cn guarantee a positive-weight triangle for every
weight function w giving G total positive weight?

Karaschuk showed that c ≤ 22/23, and this was improved by Dross to c ≤ 0.913; and the extremal
example from the Nash-Williams conjecture can be adapted to show c ≥ 3/4.

4 Sang-Il Oum

A quiver is a digraph with no loops and no directed cycles of length 2. Given a quiver D, a mutation
about v ∈ V (D) creates a new quiver D′ as follows:

• for every x adjacent to v and y adjacent from v, add m(x, v)m(v, y) arcs from x to y;

• remove any cycles of length 2 formed by adding these arcs (the opposite arcs cancel);

• reverse all arcs incident to and from v.

Notice that applying mutation about v twice returns the original quiver.
The mutation class of a quiver is the equivalence class of all quivers that can be reached by a

sequence of mutations. This equivalence class may contain infinitely many quivers.

4.1. Theorem: The mutation class of a quiver D is finite if and only if

• v(D) ≤ 2, or

• D is a triangulation of a Riemann surface, or

• D is one of eleven exceptions.

4.2. Question: Is there an equivalent graph-theoretic statement of theorem 4.1?
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4.3. Question: Is the problem of deciding whether two quivers are equivalent in P?

A mutation about v is balanced if there exist x adjacent to v and y adjacent from v with
|m′(x, y)| > |m(x, y)| if and only if there exist x′ adjacent to v and y′ adjacent from v with
|m′(x′, y′)| < |m(x′, y′)|. (Here m is the net multiplicity in the original quiver and m′ the net
multiplicity in the new quiver.) We define “balanced mutation classes” similarly. Lee proposed:

4.4. Conjecture: Is the balanced mutation class of a quiver always finite?

Lee and his student answered affirmatively for quivers with at most four vertices.

5 Maria Chudnovsky

We consider assigning colours to the vertices of a graph G so that certain cliques are not monochro-
matic. The Hoàng-McDiarmid conjecture says:

5.1. Conjecture: If G has no odd holes and ω(G) > 1, then V (G) can be 2-coloured such that no
maximum clique is monochromatic.

A corollary would be that if G has no odd holes, then χ(G) ≤ 2ω(G).
What happens if we replace “maximum” (under cardinality) by “maximal” (under inclusion)?

Let χc(G) be the minimum number of colours in a colouring of V (G) such that no maximal clique
of size at least 2 is monochromatic.

5.2. Question: Is there a constant c such that χc(G) ≤ c for every perfect graph? Does c = 3 work?

Notice that c = 2 does not work. The graph obtained from a cycle of length 9 by making vertices
3, 6 and 9 adjacent has no odd hole, and cannot be 2-clique-coloured. Here are some known results:

5.3. Theorem (Penev): If G is perfect and has no balanced skew partition, then χc(G) ≤ 2.

5.4. Theorem (Chudnovsky, Lo): If G is odd-hole-free and diamond-free (no K4 minus an edge),
then χc(G) ≤ 3.

5.5. Theorem (Chudnovsky, Gauthier, Seymour): If G is the complement of a comparability
graph then χc(G) ≤ 3.

Bruce Reed noted the applicability of strongly perfect graphs to the question. A strongly perfect
graph is a graph G for which every induced subgraph H has an independent set S meeting all
maximal cliques. It is immediate that a strongly perfect graph G satisfies χc(G) ≤ 2.

Colin McDiarmid noted that almost all perfect graphs are generalized split graphs, and almost
all generalised split graphs have χc ≤ 2, so almost all perfect graphs have χc ≤ 2.

5.6. Question: Is there an induced subgraph characterization of strongly perfect graphs?
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6 Maya Stein

Suppose the edges of Kn have been coloured with r colours (not necessarily a proper colouring).
We want to cover all vertices with a small number of disjoint monochromatic cycles (which, for the
purpose of this problem, include edges and single vertices). When r = 2, this can be done with 2
cycles; for higher r, we can do it with O(r log r) cycles, though this may not be best possible. (The
true answer might be linear in r, as the best lower bound known is r + 1.)

We can instead consider r-local colouring, in which we have arbitrarily many colours, but each
vertex is incident with edges of at most r colours. Again, when r = 2, we can cover the vertices with
two disjoint cycles; when r is greater, we can do it with O(r2) cycles, but again perhaps the true
answer is linear.

The question arises from considering r-mean colouring, where the average number of colours each
vertex sees is at most r. Again, when r = 2, two cycles suffice.

6.1. Question: How many cycles are needed for r-mean colouring when r ≥ 3?

7 Stéphan Thomassé

Harutyunyan, McDiarmid, and Scott proposed:

7.1. Conjecture: There exists ǫ > 0 such that for every digraph D with no directed 3-cycle, there
is a subset S ⊆ V (D) of size at least v(D)ǫ such that D[S] has no directed cycles.

The conjecture is reminiscent of the Erdős-Hajnal conjecture. One question is to prove this
conjecture. There are easier subsidiary questions:

7.2. Question: Does there exist ǫ > 0 such that for every digraph D with no directed 3-cycle, there
is a subset S ⊆ V (D) of size at least v(D)ǫ such that D[S] has no directed cycles of length 4?

7.3. Question: Does there exist ǫ > 0 such that for every digraph D with no directed 3-cycle, there
is a subset S ⊆ V (D) of size at least v(D)ǫ such that D[S] has no directed cycles of length less than
100?

7.4. Question: Does there exist ǫ > 0 such that for every digraph D with no directed cycle of length
less than 100, there is a subset S ⊆ V (D) of size at least v(D)ǫ such that D[S] has no directed cycles?

We denote by λ(G) the edge-connectivity of G. Borát and Thomassen proposed:

7.5. Conjecture: For every tree T there exists cT such for every G with λ(G) ≥ cT and e(T ) | e(G),
E(G) decomposes into copies of T .

Botlen, Nota, Oshivo, and Wakubayashi showed that the conjecture holds for paths with up to
six vertices. The following theorem also holds:

7.6. Theorem: There exists a function f such that for every graph G, if λ ≥ 148, δ ≥ f(ℓ), and
(ℓ − 1) | e(G), then E(G) decomposes into copies of Pℓ (the ℓ-vertex path).

7.7. Question: Can the number 148 in the statement of theorem 7.6 be reduced to 2?

7.8. Question: Does there exist a function f such that for all trees T and all graphs G, if λ(G) ≥
f(∆T ), δ(G) ≥ f(v(T )), and e(T ) | e(G), then E(G) decomposes into copies of T?

Stéphan thinks finding a counterexample may be in order.
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8 Colin McDiarmid

A graph G is a unit disc graph if there is a function f : V → R
2 such that for all u 6= v, u ∼ v if and

only if d(u, v) < 1 (that is, the unit diameter discs centered at u and v intersect). We consider χ(G)
versus ω(G) for unit disc graphs.

Around 1990, it was shown that χ(G) ≤ 3ω(G)− 2; this is shown by taking the leftmost vertex v
in the plane and noticing that the neighbours of v in each π/3 sector are a clique. But it is believed
that χ/ω is at most some number less than 3.

8.1. Question: If G is a unit disc graph must χ(G) ≤ 3ω(G)/2?

Since C5 is a unit disc graph with χ = 3 and ω = 2, this would be best possible. Notice that
if G is a unit disc graph with ω(G) = 2 then G is a planar triangle-free graph and is therefore
3-colourable; so χ(G) ≤ 3ω(G)/2 in this case.

Let χf (G) denote the fractional chromatic number of G.

8.2. Question: Is χf ≤ 5ω/4 + o(1) for unit disc graphs?

During the workshop, Zdenek Dvorak and McDiarmid disproved this; for every ω ≥ 2, the
(ω − 1)th power of C3ω−1 is a unit disc graph, and χf = 3ω/2 − 1/2. (And then Colin noticed the
same construction in a 2001 paper due to Gerke and himself.)

8.3. Question: Is there a unit disc graph G with ω(G) = 3 that is not 4-colourable?

It is worth noting that minimum degree approaches do not work. Although it is true that
δ(G) ≤ 3ω(G) − 3 for unit disc graphs G, this bound is tight; a ladder-type construction produces
(3k − 3)-regular unit disc graphs with clique number k for all k ≥ 2. (Colin remarks that this
observation seems to be new.)

9 Zhentao Li

9.1. Question: Is there an equivalent of Kempe chains for 3-colouring?

Kempe chains give information about the 4-colourings of the vertices of a face of a planar graph
that can be extended to a 4-colouring of the entire graph. Paul Seymour answered this in the
negative, because of the following:

9.2. Theorem (Devos, Seymour): For every cycle F , and for every set S of 3-colourings of F
closed under permuting colours, there exists a planar graph G containing F as a face such that the
colourings in S are precisely the 3-colourings of F that can be extended to a 3-colouring of G.

This means it is impossible to prove Kempe-chain-like theorems for 3-colouring planar graphs.

10 Frederic Havet

Consider the “F -subdivision decision problem” for digraphs: we have a fixed digraph F and are
given a digraph D, and we want to decide if D contains a subdivision of F .
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For many F , the problem is NP -complete because the k-linkage problem for directed graphs can
be reduced to F -subdivision. However, the following is a consequence of the recent directed grid
theorem proved by Kreutzer and Kawabayashi. A big vertex in a digraph D is a vertex v such that
δ+(v) ≥ 3 or δ−(v) ≥ 3 or δ+(v) = δ−(v) = 2.

10.1. Theorem: Let F be a planar digraph with no big vertices. Then the F -subdivision problem is
in P .

10.2. Conjecture: If F is not planar then the F -subdivision problem is NP -complete.

It is unknown whether this conjecture holds for K3,3 oriented by making the edges of a perfect
matching point upwards and all other edges downwards.

10.3. Question: For which digraphs F can we solve the k-linkage problem in F -subdivision-free
graphs in polynomial time?

11 Paul Seymour

It is known that for all t ≥ 1 there is a constant c(t) with the following property:

• if G is a simple graph with a bipartition (A,B), such that every vertex in B has degree t, and
|B| ≥ c(t)|A|, then G has a Kt+1 minor.

(Note that if we only ask that the vertices in B have degree t − 1 then there is no such c(t).)

11.1. Question: How large must c(t) be to have this property?

Seymour pointed out that c(t) likely must be at least O(log(t)1/2), and c(t) = O(t log(t)1/2) is
large enough. During the workshop, Colin McDiarmid proved that c(t) must be at least O(log(t));
Sergey Norin proved that c(t) = O(t log(t)1/4) is large enough; and Zdenek Dvorak improved the
latter, showing that c(t) = O(t log log(t)) is large enough.

12 Katherine Edwards

It is proved by Chekuri and Chuzhoy with a probabilistic argument that if G is a simple graph with
maximum degree ∆ and at least O(r3∆) edges, then there are r disjoint subsets of V (G) such that
for each of them, say X, the number of edges with exactly one end in X is at most O(r) times
the number with both ends in X. In joint work with Paul Seymour, we improved this to the same
conclusion, with a deterministic argument, just assuming that G has at least O(r2∆) edges.

12.1. Question: Is the same true if we just assume that G has at least O(r∆) edges?

In the course of the meeting, Alex Scott proved the result if G has at least O(r∆ log r) edges,
provided that ∆ is much larger than r3.

On a different topic:

12.2. Question: Let s, t ≥ 0 be integers, and let G be a simple graph with average degree at least
s + t + 2. Can V (G) always be partitioned into two sets A,B, such that the average degree of G[A]
is at least s and the average degree of G[B] is at least t?
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This would imply a yes answer to question 2.4. When G is regular, the claim follows from a
theorem of Stiebitz, and indeed in that case we can choose A,B such that the minimum degrees in
G[A], G[B] are s, t+1 respectively. Luke Postle proved during the meeting that 12.2 is true if |V (G)|
is sufficiently large in terms of s, t.

Colin McDiarmid asks whether there is any c such that the conclusion of 12.2 holds if we assume
instead that G has average degree at least s + t + c. He proved with a probabilistic argument that
the result holds for c = 3 if s = t, and also that if s/t = a/b where a, b are integers between 1 and k,
then the result holds with c = k(k + 3).
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