OPEN PROBLEMS

1 Notation

Throughout, $v(G)$ and $e(G)$ mean the number of vertices and edges of a graph G, and $\omega(G)$ and $\chi(G)$ denote the maximum cardinality of a clique of G and the chromatic number of G.

2 Sergey Norin

Let H be a fixed graph. The notation $H \leq G$ means H is a minor of G. We define

$$
c(H)=\sup _{H \nsucceq G} e(G) / v(G)
$$

and

$$
c_{\infty}(H)=\lim _{n \rightarrow \infty} \sup _{H \nsubseteq G ; v(G) \geq n} e(G) / v(G) .
$$

If H is connected, then $c(H)=c_{\infty}(H)$ because any extremal example can be replicated to include arbitrarily many vertices. However, $c(H)$ need not equal $c_{\infty}(H)$ if H is not connected. For example, using the notation $s H$ to denote s disjoint copies of H, we have

$$
c\left(s K_{1, r}\right)=s(r+1) / 2-1
$$

but

$$
c_{\infty}\left(s K_{1, r}\right)=(r-1) / 2+s-1 .
$$

2.1. Question: If H has no isolated vertices, is $c_{\infty}(H)=\Omega(\sqrt{c(H)})$?

Also, Reed and Wood proposed
2.2. Conjecture: If H is 2 -regular, then $c(H) \leq 2 v(H) / 3-1$.

Norin and Qian proved:
2.3. Theorem: Let H_{1} and H_{2} be graphs, and $H_{1} \sqcup H_{2}$ be their disjoint union. Then

$$
c_{\infty}\left(H_{1} \sqcup H_{2}\right) \leq c_{\infty}\left(H_{1}\right)+c_{\infty}\left(H_{2}\right)+1 .
$$

Consequently, if H is 2-regular, then $c_{\infty}(H) \leq v(H) / 2+c(H) / 2-1$.
2.4. Question: With H_{1}, H_{2} as before, is it true that

$$
c\left(H_{1} \sqcup H_{2}\right) \leq c\left(H_{1}\right)+c\left(H_{2}\right)+1 ?
$$

3 Peter Keevash

A triangle decomposition of G means a partition of $E(G)$ into triangles. Nash-Williams proposed:
3.1. Conjecture: Let G be a graph with all vertices of even degree, $3 \mid e(G)$, and $\delta(G) \geq 3 v(G) / 4$. Then G has a triangle decomposition.

Notice that $3 v(G) / 4$ is tight because if G_{1} and G_{2} are graphs with n vertices and maximum degree less than $n / 2$, the complete join of G_{1} and G_{2} does not have a triangle decomposition.

The conjecture can be adapted to edge weights:
3.2. Question: Let G be a graph with weight function $w: E(G) \rightarrow \mathbb{R}$ (weights may be negative) such that $\sum_{e \in E(G)} w(e)>0$. When must there be a triangle T with positive total weight?

There are some clear examples answering the question affirmatively and negatively. If $G=K_{n}$, then the positive overall weight condition implies that the average weight of triangles is positive, so a positive-weight triangle exists. Conversely, if G is triangle-free, then there are certainly no positiveweight triangles. Analogous to the Nash-Williams conjecture, maybe a bound on the minimum degree is sufficient to guarantee a positive-weight triangle:
3.3. Question: For what values of c does $\delta(G) \geq$ cn guarantee a positive-weight triangle for every weight function w giving G total positive weight?

Karaschuk showed that $c \leq 22 / 23$, and this was improved by Dross to $c \leq 0.913$; and the extremal example from the Nash-Williams conjecture can be adapted to show $c \geq 3 / 4$.

4 Sang-Il Oum

A quiver is a digraph with no loops and no directed cycles of length 2. Given a quiver D, a mutation about $v \in V(D)$ creates a new quiver D^{\prime} as follows:

- for every x adjacent to v and y adjacent from v, add $m(x, v) m(v, y) \operatorname{arcs}$ from x to y;
- remove any cycles of length 2 formed by adding these arcs (the opposite arcs cancel);
- reverse all arcs incident to and from v.

Notice that applying mutation about v twice returns the original quiver.
The mutation class of a quiver is the equivalence class of all quivers that can be reached by a sequence of mutations. This equivalence class may contain infinitely many quivers.
4.1. Theorem: The mutation class of a quiver D is finite if and only if

- $v(D) \leq 2$, or
- D is a triangulation of a Riemann surface, or
- D is one of eleven exceptions.
4.2. Question: Is there an equivalent graph-theoretic statement of theorem 4.1?
4.3. Question: Is the problem of deciding whether two quivers are equivalent in P?

A mutation about v is balanced if there exist x adjacent to v and y adjacent from v with $\left|m^{\prime}(x, y)\right|>|m(x, y)|$ if and only if there exist x^{\prime} adjacent to v and y^{\prime} adjacent from v with $\left|m^{\prime}\left(x^{\prime}, y^{\prime}\right)\right|<\left|m\left(x^{\prime}, y^{\prime}\right)\right|$. (Here m is the net multiplicity in the original quiver and m^{\prime} the net multiplicity in the new quiver.) We define "balanced mutation classes" similarly. Lee proposed:
4.4. Conjecture: Is the balanced mutation class of a quiver always finite?

Lee and his student answered affirmatively for quivers with at most four vertices.

5 Maria Chudnovsky

We consider assigning colours to the vertices of a graph G so that certain cliques are not monochromatic. The Hoàng-McDiarmid conjecture says:
5.1. Conjecture: If G has no odd holes and $\omega(G)>1$, then $V(G)$ can be 2-coloured such that no maximum clique is monochromatic.

A corollary would be that if G has no odd holes, then $\chi(G) \leq 2^{\omega(G)}$.
What happens if we replace "maximum" (under cardinality) by "maximal" (under inclusion)? Let $\chi_{c}(G)$ be the minimum number of colours in a colouring of $V(G)$ such that no maximal clique of size at least 2 is monochromatic.
5.2. Question: Is there a constant c such that $\chi_{c}(G) \leq c$ for every perfect graph? Does $c=3$ work?

Notice that $c=2$ does not work. The graph obtained from a cycle of length 9 by making vertices 3,6 and 9 adjacent has no odd hole, and cannot be 2 -clique-coloured. Here are some known results:
5.3. Theorem (Penev): If G is perfect and has no balanced skew partition, then $\chi_{c}(G) \leq 2$.
5.4. Theorem (Chudnovsky, Lo): If G is odd-hole-free and diamond-free (no K_{4} minus an edge), then $\chi_{c}(G) \leq 3$.
5.5. Theorem (Chudnovsky, Gauthier, Seymour): If G is the complement of a comparability graph then $\chi_{c}(G) \leq 3$.

Bruce Reed noted the applicability of strongly perfect graphs to the question. A strongly perfect graph is a graph G for which every induced subgraph H has an independent set S meeting all maximal cliques. It is immediate that a strongly perfect graph G satisfies $\chi_{c}(G) \leq 2$.

Colin McDiarmid noted that almost all perfect graphs are generalized split graphs, and almost all generalised split graphs have $\chi_{c} \leq 2$, so almost all perfect graphs have $\chi_{c} \leq 2$.
5.6. Question: Is there an induced subgraph characterization of strongly perfect graphs?

6 Maya Stein

Suppose the edges of K_{n} have been coloured with r colours (not necessarily a proper colouring). We want to cover all vertices with a small number of disjoint monochromatic cycles (which, for the purpose of this problem, include edges and single vertices). When $r=2$, this can be done with 2 cycles; for higher r, we can do it with $O(r \log r)$ cycles, though this may not be best possible. (The true answer might be linear in r, as the best lower bound known is $r+1$.)

We can instead consider r-local colouring, in which we have arbitrarily many colours, but each vertex is incident with edges of at most r colours. Again, when $r=2$, we can cover the vertices with two disjoint cycles; when r is greater, we can do it with $O\left(r^{2}\right)$ cycles, but again perhaps the true answer is linear.

The question arises from considering r-mean colouring, where the average number of colours each vertex sees is at most r. Again, when $r=2$, two cycles suffice.
6.1. Question: How many cycles are needed for r-mean colouring when $r \geq 3$?

7 Stéphan Thomassé

Harutyunyan, McDiarmid, and Scott proposed:
7.1. Conjecture: There exists $\epsilon>0$ such that for every digraph D with no directed 3 -cycle, there is a subset $S \subseteq V(D)$ of size at least $v(D)^{\epsilon}$ such that $D[S]$ has no directed cycles.

The conjecture is reminiscent of the Erdős-Hajnal conjecture. One question is to prove this conjecture. There are easier subsidiary questions:
7.2. Question: Does there exist $\epsilon>0$ such that for every digraph D with no directed 3 -cycle, there is a subset $S \subseteq V(D)$ of size at least $v(D)^{\epsilon}$ such that $D[S]$ has no directed cycles of length 4 ?
7.3. Question: Does there exist $\epsilon>0$ such that for every digraph D with no directed 3-cycle, there is a subset $S \subseteq V(D)$ of size at least $v(D)^{\epsilon}$ such that $D[S]$ has no directed cycles of length less than 100 ?
7.4. Question: Does there exist $\epsilon>0$ such that for every digraph D with no directed cycle of length less than 100 , there is a subset $S \subseteq V(D)$ of size at least $v(D)^{\epsilon}$ such that $D[S]$ has no directed cycles?

We denote by $\lambda(G)$ the edge-connectivity of G. Borát and Thomassen proposed:
7.5. Conjecture: For every tree T there exists c_{T} such for every G with $\lambda(G) \geq c_{T}$ and $e(T) \mid e(G)$, $E(G)$ decomposes into copies of T.

Botlen, Nota, Oshivo, and Wakubayashi showed that the conjecture holds for paths with up to six vertices. The following theorem also holds:
7.6. Theorem: There exists a function f such that for every graph G, if $\lambda \geq 148, \delta \geq f(\ell)$, and $(\ell-1) \mid e(G)$, then $E(G)$ decomposes into copies of P_{ℓ} (the ℓ-vertex path).
7.7. Question: Can the number 148 in the statement of theorem 7.6 be reduced to 2?
7.8. Question: Does there exist a function f such that for all trees T and all graphs G, if $\lambda(G) \geq$ $f\left(\Delta_{T}\right), \delta(G) \geq f(v(T))$, and $e(T) \mid e(G)$, then $E(G)$ decomposes into copies of T ?

Stéphan thinks finding a counterexample may be in order.

8 Colin McDiarmid

A graph G is a unit disc graph if there is a function $f: V \rightarrow \mathbb{R}^{2}$ such that for all $u \neq v, u \sim v$ if and only if $d(u, v)<1$ (that is, the unit diameter discs centered at u and v intersect). We consider $\chi(G)$ versus $\omega(G)$ for unit disc graphs.

Around 1990, it was shown that $\chi(G) \leq 3 \omega(G)-2$; this is shown by taking the leftmost vertex v in the plane and noticing that the neighbours of v in each $\pi / 3$ sector are a clique. But it is believed that χ / ω is at most some number less than 3 .
8.1. Question: If G is a unit disc graph must $\chi(G) \leq 3 \omega(G) / 2$?

Since C_{5} is a unit disc graph with $\chi=3$ and $\omega=2$, this would be best possible. Notice that if G is a unit disc graph with $\omega(G)=2$ then G is a planar triangle-free graph and is therefore 3 -colourable; so $\chi(G) \leq 3 \omega(G) / 2$ in this case.

Let $\chi_{f}(G)$ denote the fractional chromatic number of G.
8.2. Question: Is $\chi_{f} \leq 5 \omega / 4+o(1)$ for unit disc graphs?

During the workshop, Zdenek Dvorak and McDiarmid disproved this; for every $\omega \geq 2$, the $(\omega-1)$ th power of $C_{3 \omega-1}$ is a unit disc graph, and $\chi_{f}=3 \omega / 2-1 / 2$. (And then Colin noticed the same construction in a 2001 paper due to Gerke and himself.)
8.3. Question: Is there a unit disc graph G with $\omega(G)=3$ that is not 4 -colourable?

It is worth noting that minimum degree approaches do not work. Although it is true that $\delta(G) \leq 3 \omega(G)-3$ for unit disc graphs G, this bound is tight; a ladder-type construction produces ($3 k-3$)-regular unit disc graphs with clique number k for all $k \geq 2$. (Colin remarks that this observation seems to be new.)

9 Zhentao Li

9.1. Question: Is there an equivalent of Kempe chains for 3-colouring?

Kempe chains give information about the 4-colourings of the vertices of a face of a planar graph that can be extended to a 4 -colouring of the entire graph. Paul Seymour answered this in the negative, because of the following:
9.2. Theorem (Devos, Seymour): For every cycle F, and for every set S of 3-colourings of F closed under permuting colours, there exists a planar graph G containing F as a face such that the colourings in S are precisely the 3 -colourings of F that can be extended to a 3 -colouring of G.

This means it is impossible to prove Kempe-chain-like theorems for 3-colouring planar graphs.

10 Frederic Havet

Consider the " F-subdivision decision problem" for digraphs: we have a fixed digraph F and are given a digraph D, and we want to decide if D contains a subdivision of F.

For many F, the problem is $N P$-complete because the k-linkage problem for directed graphs can be reduced to F-subdivision. However, the following is a consequence of the recent directed grid theorem proved by Kreutzer and Kawabayashi. A big vertex in a digraph D is a vertex v such that $\delta^{+}(v) \geq 3$ or $\delta^{-}(v) \geq 3$ or $\delta^{+}(v)=\delta^{-}(v)=2$.
10.1. Theorem: Let F be a planar digraph with no big vertices. Then the F-subdivision problem is in P.
10.2. Conjecture: If F is not planar then the F-subdivision problem is $N P$-complete.

It is unknown whether this conjecture holds for $K_{3,3}$ oriented by making the edges of a perfect matching point upwards and all other edges downwards.
10.3. Question: For which digraphs F can we solve the k-linkage problem in F-subdivision-free graphs in polynomial time?

11 Paul Seymour

It is known that for all $t \geq 1$ there is a constant $c(t)$ with the following property:

- if G is a simple graph with a bipartition (A, B), such that every vertex in B has degree t, and $|B| \geq c(t)|A|$, then G has a K_{t+1} minor.
(Note that if we only ask that the vertices in B have degree $t-1$ then there is no such $c(t)$.)
11.1. Question: How large must $c(t)$ be to have this property?

Seymour pointed out that $c(t)$ likely must be at least $O\left(\log (t)^{1 / 2}\right)$, and $c(t)=O\left(t \log (t)^{1 / 2}\right)$ is large enough. During the workshop, Colin McDiarmid proved that $c(t)$ must be at least $O(\log (t))$; Sergey Norin proved that $c(t)=O\left(t \log (t)^{1 / 4}\right)$ is large enough; and Zdenek Dvorak improved the latter, showing that $c(t)=O(t \log \log (t))$ is large enough.

12 Katherine Edwards

It is proved by Chekuri and Chuzhoy with a probabilistic argument that if G is a simple graph with maximum degree Δ and at least $O\left(r^{3} \Delta\right)$ edges, then there are r disjoint subsets of $V(G)$ such that for each of them, say X, the number of edges with exactly one end in X is at most $O(r)$ times the number with both ends in X. In joint work with Paul Seymour, we improved this to the same conclusion, with a deterministic argument, just assuming that G has at least $O\left(r^{2} \Delta\right)$ edges.
12.1. Question: Is the same true if we just assume that G has at least $O(r \Delta)$ edges?

In the course of the meeting, Alex Scott proved the result if G has at least $O(r \Delta \log r)$ edges, provided that Δ is much larger than r^{3}.

On a different topic:
12.2. Question: Let $s, t \geq 0$ be integers, and let G be a simple graph with average degree at least $s+t+2$. Can $V(G)$ always be partitioned into two sets A, B, such that the average degree of $G[A]$ is at least s and the average degree of $G[B]$ is at least t ?

This would imply a yes answer to question 2.4. When G is regular, the claim follows from a theorem of Stiebitz, and indeed in that case we can choose A, B such that the minimum degrees in $G[A], G[B]$ are $s, t+1$ respectively. Luke Postle proved during the meeting that 12.2 is true if $|V(G)|$ is sufficiently large in terms of s, t.

Colin McDiarmid asks whether there is any c such that the conclusion of 12.2 holds if we assume instead that G has average degree at least $s+t+c$. He proved with a probabilistic argument that the result holds for $c=3$ if $s=t$, and also that if $s / t=a / b$ where a, b are integers between 1 and k, then the result holds with $c=k(k+3)$.

