OPEN PROBLEMS

1. (Colin McDiarmid)

A class of graphs \mathcal{A} is *bridge-addable* if for every graph $G \in \mathcal{A}$ and every two components C, C' and all $x \in V(C)$ and $x' \in V(C')$, the graph obtained from G by adding the edge xx' belongs to \mathcal{A} .

Conjecture: there is a constant c > 0 such that, for every bridge-addable class \mathcal{A} , if one draws uniformly at random an unlabelled graph G of size n from \mathcal{A} , then G is connected with probability at least c.

Suppose that a graph is in the class \mathcal{A} if and only if each component is; in this case we call \mathcal{A} decomposable. If \mathcal{A} is decomposable as well as bridge-addable, could it be true that the constant c above is at least the one for forests, for large n?

2. (Sergey Norin)

There is a theorem of Haight asserting that for all k and l, there exists a digraph D with girth at least k and which is l-dominated (every subset of size l is dominated).

Question: If D has size n and girth at least 4, what is the maximum l (in terms of n) for which D is l-dominated?

3. (Maria Chudnovsky)

A k-lift G_k of a graph G is obtained by substituting a stable set S_x of size k for every vertex x of G, and then joining S_x with S_y by a perfect matching whenever xy is an edge of G.

The number of perfect matchings $pm(G_k)$ can be as large as $pm(G)^k$, just by taking the disjoint union of k copies of G. This is not an upper bound when G is the triangle.

Conjecture: If G is bipartite, then $pm(G_k) \leq pm(G)^k$.

4. (Zdenek Dvorak)

When making the *full product* of G and H, if xy is an edge of G and uv is an edge of H, then all edges are added between (x, u), (x, v), (y, u) and (y, v).

The full cube of size n is the full product of three paths P_n .

Conjecture. Suppose that S is a separator between the left face of the full cube and the right face; is it true that if n is large then the graph induced on S has large tree-width? SOLVED DURING WORKSHOP

5. (Sang-il Oum)

There exists an algorithm which can test in time $f(k)n^3$ if the linear rankwidth of a graph is at most k; in other words, decides if there exists an enumeration of the vertices v_1, v_2, \ldots, v_n in such a way that every partition $\{v_1, \ldots, v_i\}$ and $\{v_{i+1}, \ldots, v_n\}$ has bounded rank. (*Rank* of a partition X, Y means the rank over GF(2) of the matrix indexed by $X \times Y$, where the entry for $u \in X$ and $v \in Y$ is 1 if u, v are adjacent and 0 otherwise.)

Question: Find such an algorithm (the existence proof is non-constructive).

6. (Dieter Rautenbach)

If G is a d-regular graph with m edges, then every induced matching of G contains at most m/(2d-1) edges.

Can the graphs for which equality holds be recognized efficiently? These are exactly the *d*-regular graphs G whose vertex set can be partitioned into two sets X and Y such that X is independent and G[Y] is 1-regular.

If these graphs cannot be recognized efficiently, then one might consider approximating the maximum induced matching.

The best known approximation algorithm for the maximum induced matching problem restricted to *d*-regular graphs is due to Gotthilf and Lewenstein and has a performance ratio of 0.75d + 0.15.

Can this be improved for *d*-regular graphs G with m edges that actually have an induced matching with (close to) m/(2d-1) edges? That is, can one find a large induced matching in graph that are guaranteed to possess one?

7. (Stéphan Thomassé)

The triangle-free chromatic number of a graph G is the maximum chromatic number of a triangle-free induced subgraph. Call this $\chi_3(G)$.

Conjecture. There is a function f such that $\chi(G) \leq f(\chi_3(G), \omega(G))$.

8. (Paul Wollan)

A class of hypergraphs H has the *Erdos-Posa Property* (EPP) if there is a function f for which the transversal number is bounded above by f(packing number).

Problem: Find a natural class with EPP where the packing problem is not FPT.

9. (Paul Seymour)

What is the complexity of the following problem?:

Input: $s_1, t_1, s_2, t_2, s_3, t_3$ vertices of a digraph.

Output: Find three s_i, t_i -paths such that no arc is used by all three of them.

10. (Sergey again)

Question. Is there a triangle-free graph G such that for every subset X of size 4 (or even 1000) and for every stable set I in X, there is a vertex v with neighbourhood N(v) say such that $N(v) \cap X = I$?