OPEN PROBLEMS

1. (Colin McDiarmid)

A class of graphs \mathcal{A} is bridge-addable if for every graph $G \in \mathcal{A}$ and every two components C, C^{\prime} and all $x \in V(C)$ and $x^{\prime} \in V\left(C^{\prime}\right)$, the graph obtained from G by adding the edge $x x^{\prime}$ belongs to \mathcal{A}.
Conjecture: there is a constant $c>0$ such that, for every bridge-addable class \mathcal{A}, if one draws uniformly at random an unlabelled graph G of size n from \mathcal{A}, then G is connected with probability at least c.
Suppose that a graph is in the class \mathcal{A} if and only if each component is; in this case we call \mathcal{A} decomposable. If \mathcal{A} is decomposable as well as bridge-addable, could it be true that the constant c above is at least the one for forests, for large n ?
2. (Sergey Norin)

There is a theorem of Haight asserting that for all k and l, there exists a digraph D with girth at least k and which is l-dominated (every subset of size l is dominated).
Question: If D has size n and girth at least 4 , what is the maximum l (in terms of n) for which D is l-dominated?
3. (Maria Chudnovsky)

A k-lift G_{k} of a graph G is obtained by substituting a stable set S_{x} of size k for every vertex x of G, and then joining S_{x} with S_{y} by a perfect matching whenever $x y$ is an edge of G.
The number of perfect matchings $\mathrm{pm}\left(G_{k}\right)$ can be as large as $\mathrm{pm}(G)^{k}$, just by taking the disjoint union of k copies of G. This is not an upper bound when G is the triangle.
Conjecture: If G is bipartite, then $\mathrm{pm}\left(G_{k}\right) \leq \mathrm{pm}(G)^{k}$.
4. (Zdenek Dvorak)

When making the full product of G and H, if $x y$ is an edge of G and $u v$ is an edge of H, then all edges are added between $(x, u),(x, v),(y, u)$ and (y, v).
The full cube of size n is the full product of three paths P_{n}.
Conjecture. Suppose that S is a separator between the left face of the full cube and the right face; is it true that if n is large then the graph induced on S has large tree-width?

SOLVED DURING WORKSHOP

5. (Sang-il Oum)

There exists an algorithm which can test in time $f(k) n^{3}$ if the linear rankwidth of a graph is at most k; in other words, decides if there exists an enumeration of the
vertices $v_{1}, v_{2}, \ldots, v_{n}$ in such a way that every partition $\left\{v_{1}, \ldots, v_{i}\right\}$ and $\left\{v_{i+1}, \ldots, v_{n}\right\}$ has bounded rank. (Rank of a partition X, Y means the rank over $G F(2)$ of the matrix indexed by $X \times Y$, where the entry for $u \in X$ and $v \in Y$ is 1 if u, v are adjacent and 0 otherwise.)
Question: Find such an algorithm (the existence proof is non-constructive).
6. (Dieter Rautenbach)

If G is a d-regular graph with m edges, then every induced matching of G contains at most $m /(2 d-1)$ edges.
Can the graphs for which equality holds be recognized efficiently? These are exactly the d-regular graphs G whose vertex set can be partitioned into two sets X and Y such that X is independent and $G[Y]$ is 1-regular.
If these graphs cannot be recognized efficiently, then one might consider approximating the maximum induced matching.
The best known approximation algorithm for the maximum induced matching problem restricted to d-regular graphs is due to Gotthilf and Lewenstein and has a performance ratio of $0.75 d+0.15$.
Can this be improved for d-regular graphs G with m edges that actually have an induced matching with (close to) $m /(2 d-1)$ edges? That is, can one find a large induced matching in graph that are guaranteed to possess one?
7. (Stéphan Thomassé)

The triangle-free chromatic number of a graph G is the maximum chromatic number of a triangle-free induced subgraph. Call this $\chi_{3}(G)$.
Conjecture. There is a function f such that $\chi(G) \leq f\left(\chi_{3}(G), \omega(G)\right)$.
8. (Paul Wollan)

A class of hypergraphs H has the Erdos-Posa Property (EPP) if there is a function f for which the transversal number is bounded above by f (packing number).
Problem: Find a natural class with EPP where the packing problem is not FPT.
9. (Paul Seymour)

What is the complexity of the following problem?:
Input: $s_{1}, t_{1}, s_{2}, t_{2}, s_{3}, t_{3}$ vertices of a digraph.
Output: Find three s_{i}, t_{i}-paths such that no arc is used by all three of them.
10. (Sergey again)

Question. Is there a triangle-free graph G such that for every subset X of size 4 (or even 1000) and for every stable set I in X, there is a vertex v with neighbourhood $N(v)$ say such that $N(v) \cap X=I$?

