ON A QUESTION OF LILLIAN PIERCE
NICHOLAS M. KATZ

ABSTRACT. We establish estimates for certain families of character
sums over finite fields, including those which arise in Lillian Pierce’s
recent work [P] on estimating the 3-part of the class number of
quadratic fields.

1. INTRODUCTION, THE BASIC SETTING, AND STATEMENT OF THE
MAIN RESULT

Let £ be a finite field of characteristic p and cardinality ¢, ¥ a non-
trivial C*-valued additive character of k£, and y a nontrivial C*-valued
multiplicative character of k*. We define n := the order of y. We ex-
tend y to a function on all of k by defining x(0) := 0. Let f(x) and
g(x) in k[x] be two polynomials over k in one variable x, each of strictly
positive degree. We define

d:= deg(f), e := deg(g).
For each element a in k, we define a C-valued function GG, on k by
Go(2) 1= X(=f(x) + g(2))¢(ax).
€k

To provide some context, recall the following lemma, which results in
a by now well known way from the truth, due to Weil [We-CA], of the
Riemann Hypothesis for curves over finite fields, and its application,
already known to Davenport and Hasse [Dav-Ha], to the estimation of
abelian character sums.

Lemma 1.1. Suppose that either x? is nontrivial, or that a is nonzero.
Then we have the estimate

|Gal2)| < dg'”?.

We are interested in the L% norm of the function Z,, and in the inner
product of G, both with additive translates of itself and with additive
character "twists” of additive translates of itself. Denote by G/, the
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complex conjugate of the function G,. For a,b,c € k, we define the
complex character sum

I(a,b,¢) :=>  Gu(2)Gulz + c)ib(b2).

z€k

In view of the lemma above, we have the following "trivial estimate”
for the character sum [(a,b,¢).

Lemma 1.2. Suppose that either x? is nontrivial, or that a is nonzero.
Then we have the estimate

[I{a,b,0)] < &4

Our main result gives conditions under which we can improve on the
above 7trivial estimate”, and obtain the improved estimate

|I(a,b,c)| < 2de(d — 1)q3/2.

Our method requires that the characteristic p be large compared to d
and to e. Fortunately, this is not a problem in Pierce’s applications,
where d and e are fixed, and p varies. [Indeed, in her applications, y is
the quadratic character, f(z) is —4a®, and g(z) is 62? for some nonzero

dekl]
Theorem 1.3. We have the estimate
|I(a,b,c)| < 2de(d — 1)q3/2.

in each of the following five situations:

(1) ab#0, and e < d < p,

(2) ac#£0,b=0, e <d<p, gedle,d) =1, and e(d — 1) < p,

(3) a=0,b#0,d<p and x* is nontrivial,

(4) a=b=0, ¢ #0, the polynomials g(z) and g(z + ¢) in k[z] are
relatively prime, f(x) = az? for some nonzero a € k, n and d
are relatively prime, and either
(da) e <n or
(4b) d is prime and e < nd.

B)a=b=0,c#£0,e<d<p d>3 eld-1)<p, xis
nontrivial, the the polynomial f(x) is “supermorse” (i.e., its
derivative f'(x) has d — 1 distinct zeroes in k, which map by f
to d — 1 distinet points), and either
(5a) x is the quadratic character y2, or
(5b) d > 5, or
(5¢) d >3 and (xx2)° is nontrivial.
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2. PROOF OF THE MAIN RESULT: BASIC IDEAS

Recall that n is the order of y. Thus the function G, takes values
in the cyclotomic field K := Q((,, (,), and the character sum [(a,b,c)
lies in K. We choose a prime number ¢ # p, and a field embedding of
K into Q,. We introduce the K-valued function H, on k defined by

Ho(t) := Y x(t = f(2))(ax).

Thus we have the tautological relation

Gu(2) = Ha(g(2))-

We first interpret the function H, as the trace function of an f-adic
sheaf ‘H, on the affine line A! over k. The sheaf H, turns out to be
a "middle additive convolution” in the sense of [Ka-RLS, Chapter 2].
The function GG, is then the trace function of the pullback sheaf

Go = gH,.

We then analyze the possible interactions of the sheaf G, with various
twisted additive translates of itself. We then use Deligne’s fundamental
results [De-Weil 11, 3.3] to obtain the asserted estimates.

3. PROOF OF THE MAIN RESULT IN CASES (1) AND (2)

What cases (1) and (2) have in common is that @ # 0. At the expense
of replacing the originally chosen nontrivial additive character ¢» by the
the equally nontrivial additive character

ta(@) = Y(az),
and replacing b by b/a, we reduce to the case a = 1. We denote by L,

the Artin-Schreier sheaf on Al over k corresponding to ¢». We introduce

the sheafl F on the w-line A over k& defined by
F = f*/;d,.

We denote by £, the Kummer sheaf on G, over k corresponding to x,
extended by zero across the origin. Write the function H; on k as

Hi(t) :=Y  x(t = f(2))(x)

€k

=) x(t—w) > ¥

wek z€k, f(z)=w

_ Z X(t — w)Trace( Froby,,|F)

wek
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= Z Trace(Froby | Li—wy @ F).
wek
This means precisely that the function H; on k is the trace function,
at k-rational points, of the lower ! additive convolution of the sheaves
L, and F, or what is the same, of the lower | additive convolution, say

M,

M = L 1] %41 F[1]
of the perverse sheaves £, [1] and F[1] on A! over k. Both of these per-
verse sheaves are visibly middle extensions (remember x is nontrivial)
which, as perverse sheaves, are pure of weight one. Both are geometri-
cally irreducible: this is obvious for £,[1], and it holds for F[1] because
F has generic rank d, and all its oco-slopes are 1/d, so is already irre-
ducible under the inertia group I(o0), cf. [Ka-GKM, 1.14], and has
Swan conductor 1 at co. As d > 1, this irreducibility already guaran-
tees that F[1] has "condition P” in the sense of [Ka-RLS, 2.6.2], thanks
to [Ka-RLS, 2.6.13-15]. Therefore, by [Ka-RLS, 2.9.7], the additive !
convolution

M = L [1] %4+ F[1]

is itself a perverse sheaf on Al over k. Looking fibre by fibre, we see
that M is of the form H[1], with H a single sheaf, which is, on a dense
open set, both lisse and pure of weight one. Thus M is, on a dense
open set, pure of weight 2 as a perverse sheaf. We next claim that M
is in fact the "middle additive convolution” of £,[1] and F[1]. Denote
by M, the additive x convolution

M, = £ [1] %4, F[1].

then we know from [Ka-RLS, 2.10.10] and [Ka-MMP, 6.5.4, 3)] that
the kernel Ker of the canonical "forget supports” map from M to M,
is a perverse sheaf of the form (a lisse sheaf on A')[1] which is mixed of
weight < 1 and which is geometrically a successive extension of various
Ly, [1] sheaves. Since M is generically pure of weight 2, while Ker is
everywhere lisse and of strictly lower weight, it follows that Ker = 0,
and hence that M is in fact the middle additive convolution

M = L[] %s.mia FI1].

How can we exploit this? We know, from [Ka-RLS, 2.9.7. 2)] and[Ka-MMP,
6.5.4, 2)] respectively, that M = H[1] is geometrically irreducible as a
perverse sheaf, and is pure of weight 2. This means in turn that H is
mixed of weight at most 1, and that it is the middle extension from some
open dense set of a geometrically irreducible lisse sheaf which is pure of
weight 1. Moreover, it is an exercise, using [Ka-RLS, 3.3.5], to compute
both the generic rank of M = H[1], and all its local monodromies, given
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the same data for F. Recall that F is a middle extension of generic
rank d, all of whose oo-slopes are 1/d. Because d := deg(f) < p, and
L, is lisse on A') F is tamely ramified outside the point at oo, and
the sum of its drops over all k-valued points of A' is just d — 1, the
total number of zeroes, counting multiplicities, of the derivative f’(x)
of f at all k- valued points of A'. It is then routine to conclude, using
[Ka-RLS, 3.3.5], that H has generic rank d, is tame outside oo, and has
all oco-slopes 1/d. Moreover, the drops of H at the k-valued points of
Al occur precisely at the points where F had drops, and the drops at
each such point are the same for ‘H and for F. These drop points are
the critical values of the polynomial f, i.e. the values f(«) at the zeroes
a of the derivative f'(x). At each critical value f(«) of f, the drop at
f(e) is the sum, over all zeroes + in k of the polynomial f(z)— f(a), of
the expression (multiplicity of v as a zero of f(x) — f(«)) - 1. In par-
ticular, the sum of all the drops of H at finite distance is just d —1, the
total number, counting multiplicity, of zeroes of the derivative f’(x).

With this information established about ‘H, we now turn to the sheaf
G := G :=g"H on Al. It is mixed of weight at most 1, and on a dense
open set it is lisse and pure of weight 1. It has generic rank d, it is
tame at all k-valued points of A', and all of its co-slopes are e/d. Its
only drops at k-valued points of A' are at the inverse images by g of
the points at which H drops, and at such an inverse image point, the
size of the drop is unchanged. Since ¢ is a polynomial of degree e, there
are at most e(d-1) finite points at which G drops, and the sums of all
its drops at finite points is at most e(d-1). Moreover, the sheaf G has
no nonzero punctual sections (as this was already true of H, being a
middle extension sheaf).

Let us now treat cases (1) and (2). Since e < d, G has all its co-
slopes e¢/d < 1. Similarly, G, the sheaf formed using the characters Y
and ¢, but the same f and ¢, has the same ramification properties as
G. The effect of any additive translation

T.:2 = z2z+¢

on G is just to translate the finite singularities, keeping the same drops.
The oo-slopes remain e¢/d < 1. After our reduction to the case a = 1
explained above, we must estimate the quantity /(1,b,¢) This quantity
is the sum of the traces of Frobenius at all the k-rational points of Al

of the sheaf
E =G TG D Ly,
Notice that
E =& @ Ly,.
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This sheaf & is mixed of weight at most 2, it has no nonzero punctual
sections, it is tame over A!, and the sum of its finite drops is at most

2(gen.rk.( Z drop;(G) = 2de(d — 1).
zehl (k)

All of the d* co-slopes of & are < e/d < 1.
In case (1), we have b # 0, and hence all of the d* co- slopes the
sheaf &, are 1. In particular, &, is totally wild at oo, so we have

H*(A' @4 k, &) = 0.

We also have the vanishing of the H? (because there are no nonzero
punctual sections), and so the Lefschetz Trace formula gives

I(a,b,c) = —Trace(Froby|H! (A" @ k, &)).

By Deligne’s fundamental result, this H! is mixed of weight at most 3
(because &, is mixed of weight at most 2), and so we get the estimate

[I(a,b,¢)] < (dimH!)q¥? = —x(A' @i K, &)q*/?,

in the case when b # 0. In this case, the "generic rank” term cancels
the 7 Swan,,” term in the Euler-Poincare formula,

YA @ k, &) = gen.rk.(&) — Z drop, (&) — Swan.. (&),
zeAl ( )
and we find
XA @p k&)= ) drop.(&) < 2de(d - 1).
zeAl (k)
So in case (1) we have the asserted estimate
|I(a,b,c)| < 2de(d — 1)q3/2.

We now turn to the proof of case (2). The basic idea for treating
this case is to pay attention to the location of the finite singularities of
the sheaf G. Here a remains nonzero, b is now zero, but ¢ is nonzero.
We must estimate the quantity /(1,0,¢) This quantity is the sum of
the traces of Frobenius at all the k-rational points of A of the sheaf

This sheaf & is mixed of weight at most 2, it has no nonzero punctual
sections, it is tame over Al and the sum of its finite drops is at most

2(gen.rk.( Z drop;(G) = 2de(d — 1).
zehl (k)
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All of the d* oco-slopes of & are < e/d < 1, and hence we have the
inequality

Swan..(&)) < ed.

We rewrite the Fuler-Poincare formula

XC(AI @ k &) = gen.rk.(&) — Z drop, (&) — Swans (&),
zeAl ( )
as

XA @p k&) = Y drop.(&) + Swanw(&) — d,
zeh! (F)

so we have the inequality
—x (A @y, k, &) < 2de(d — 1) + ed — d* < 2de(d — 1),

this last equality simply because e < d. We have already noted that
the sheaf & is mixed of weight at most 2, and has no nonzero punctual
sections. Thus its H? vanishes, and exactly as in case (1) above, it
remains only to prove that
HI(A" @ik, &) =0

But recall that

By assumption in case (2), the integers e and d are relatively prime.
Therefore the d oo-slopes of G, all being ¢/d, have exact denominator
d, and hence [Ka-GKM, 1.14] G is irreducible as a representation of
I(o0), the inertia group at co. Consequently, on any dense open set
U of A' @, k on which the sheaf G is lisse, this sheaf is geometrically
irreducible. As H? is a birational invariant, what we must prove is that
for any ¢ # 0, and for any dense open set U of A' @ k on which the
sheaf G and its additive translate TG are both lisse, these two sheaves
are not geometrically isomorphic. We argue by contradiction. If G and
its additive translate T7G are geometrically isomorphic on some dense
open set, then their extensions by direct image to A' @y k, say Gmid
and TG4 are isomorphic middle extension sheaves on A @ k, and
hence they have the same set S of "finite singularities”, i.e., the same
set S of points in A' @ k at which they fail to be lisse. Thus the
set S of finite singularities is equal to its additive translate by ¢. Now
the additive group F,c generated by ¢ acts freely on A'(k) by additive
translation, so from the stability of the set S under this free action, we
infer the congruence Card(S) = 0 mod p. We have already noted that
the literal sheal G on A! @ k has at most e(d — 1) finite singularities.
Therefore the middle extension sheaf G,,;4, whose finite singularities
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are among those of G, itself has at most e(d — 1) finite singularities. By
assumption in case (2), we have

e(d—1) <p.

Thus we infer that S is empty, i.e., that the sheaf G,,;4 is lisse of rank
d on A! @, k. This now leads to a contradiction as follows. From its
I(o0)-slopes all being e/d, we have already noted that G4 is [(o0)-
irreducible. Therefore G,,;4 is lisse of rank d, geometrically irreducible
and nonconstant. So its only possibly nonzero compact cohomology
group on A' @ k is H!. Thus its Euler characteristic is non-positive.
But this Euler characteristic is

rank(Gmia) — Swance(Gmid) = d —e > 1,

contradiction. This concludes the proof of case (2).

4. PROOF OF THE MAIN RESULT IN CASES (3), (4), AND (5)

What these cases have in common is that ¢ = 0. In this situation,
the relevant sheaf F on the w-line A' over k& we need to begin with is

F = Ker(Trace : {.Q; — Q).
The function Hy on k is

Holt) = 3" \(t = f(a))

z€k
=Y x(t—w) Y 1
wek z€k, f(z)=w
=) x(t-w)(=1+ > 1),
wek z€k, f(z)=w

this last equality because y is nontrivial. Thus

Ho(t) = Z Trace(Froby | Li—wy @ F).
wek
This means precisely that the function Hy on k is the trace function,
at k-rational points, of the lower ! additive convolution of the sheaves
L, and F, or what is the same, of the lower | additive convolution, say

M,
M = L 1] %41 F[1]

of the perverse sheaves £,[1] and F[1] on A! over k. Both of these

perverse sheaves are visibly middle extensions (remember y is nontriv-

ial) which, as perverse sheaves, are pure of weight one. While £, [1]

is geometrically irreducible, F[1] need not be (and indeed is certainly

not in Pierce’s original question), but it is, in any case, geometrically



ON A QUESTION OF LILLIAN PIERCE 9

semisimple. Because d < p, the perverse sheaf F[1] is everywhere
tamely ramified. We claim it satisfies "condition P” in the sense of
[Ka-RLS, 2.6]. Indeed, by tameness it contains, geometrically, no sheaf
Ly, for any nonzero ¢. It contains no constant sheaf either, because by
Frobenius reciprocity, the sheaf f,Q, contains just one copy of the con-
stant sheaf. So once again by [Ka-RLS, 2.6], the additive ! convolution

M = L[] % F[1]

is itsell a perverse sheaf on A! over k. Looking fibre by fibre, and
remembering that in cases (3) and (4) y? is assumed nontrivial, we see
that M is of the form H[1], with H a single sheaf, which is, on a dense
open set, both lisse of rank d-1 and pure of weight one. Thus M is, on
a dense open set, pure of weight 2 as a perverse sheaf. Exactly as in
the previous section, this generic purity shows that M is the "middle
additive convolution” of £, [1] and F[1]. We know, from [Ka-RLS,
2.10.10] and [Ka-MMP, 6.5.4, 2)] respectively, that M = H][l] is pure
of weight 2 as a perverse sheaf, and hence geometrically semisimple.
This means in turn that H is mixed of weight at most 1, and that it
is the middle extension from some open dense set of a geometrically
semisimple lisse sheaf which is pure of weight 1. Moreover, it is an
exercise, using [Ka-RLS, 3.3.5], to compute both the generic rank of
M = H[1], (which in our case we know by inspection” to be d-1) and
all its local monodromies, given the same data for F. Recall that F
is an everywhere tame middle extension of generic rank d — 1. The
sum of its drops over all k-valued points of A' is just d — 1, the total
number of zeroes, counting multiplicities, of the derivative f'(x) of f at
all k-valued points of A'. It is then routine to conclude, using [Ka-RLS,
3.3.5], that H is everywhere tame. Moreover, the drops of H at the
k-valued points of A' occur precisely at the points where F had drops,
and the drops at each such point are the same for H and for F. These
drop points are the critical values of the polynomial f, i.e. the values
f(a) at the zeroes o of the derivative f’(x). At each critical value
f(a) of f, the drop at f(a) is the sum, over all zeroes v in k of the
polynomial f(x) — f(«a), of the expression (multiplicity of v as a zero
of f(x) — f(a)) - 1. In particular, the sum of all the drops of H at
finite distance is just d — 1, the total number, counting multiplicity, of
zeroes of the derivative f'(x).

With this information established about ‘H, we now turn to the sheaf
G := G :=g"H on Al. It is mixed of weight at most 1, and on a dense
open set it is lisse and pure of weight 1. It has generic rank d — 1,
and everywhere tame. Its only drops at k-valued points of Al are at
the inverse images by g of the points at which H drops, and at such
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an inverse image point, the size of the drop is unchanged. Since g is a
polynomial of degree e, there are at most e(d-1) finite points at which
G drops, and the sums of all its drops at finite points is at most e(d-1).
Moreover, the sheaf G has no nonzero punctual sections (as this was
already true of ‘H, being a middle extension sheaf).

We can now treat cases (3), (4), and (5). The sheaf G, the sheaf
formed using the character Y, but the same f and ¢, has the same
ramification properties as G. The effect of any additive translation

T.:2 = z2z+¢

on G is just to translate the finite singularities, keeping the same drops.
We must estimate the quantity 1(0,b,¢) This quantity is the sum of
the traces of Frobenius at all the k-rational points of A of the sheaf

55 = g ® T:?@ £¢b.
Notice that
E =& @ Ly,.
This sheaf & is mixed of weight at most 2, it has no nonzero punctual

sections, it is everywhere tame, and the sum of its finite drops is at
most
2(gen.rk.( Z drop,(G) = 2e(d — 1)°.
zehl (k)

In case (3), we have b # 0, and hence &, is totally wild at oo, with
all breaks 1. So Hi(A' @ k, &) vanishes for i # 1. The dimension of
the H! is given by the Euler-Poincare formula, in which the "generic
rank” term is cancelled by the Swan., term, and we find

dimH} = —x(A' @k, &)= Y drop.(&) < 2e(d — 1)
weAl ()
So in case (3) we find the estimate
|1(0,b,¢)| < 2e(d — 1)2q3/2,
which is in fact a slight improvement over the asserted estimate
|1(0,b,¢)| < 2ed(d — 1)q3/2.
In case (4), we have a = b =0, but ¢ # 0. In this case we have
—x(A'@ik, &) = — + Y dropy(&) < —(d—1)*+2¢(d—1)* < 2ed(d—1).
€Al (k)

It remains to show that H?(A' @y k, &) vanishes, or equivalently, that
on any dense open set U in A! @ k on which both G and T*G are lisse
(remember both are geometrically semisimple, by purity ), these two
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sheaves have no irreducible constituent in common. Because we are
in case (4), f is just a monomial of degree d, and consequently F is,
geometrically, the extension by zero of the lisse sheaf on G,, @ k given

by
F= P L.

pd=1,pnontriv.

Hence its middle convolution with £, is given by

nHe @ L

pd=1,p nontriv.

[Remember that y? is nontrivial, so each character py which appears
in the above sum is nontrivial]. The pullback by ¢ is then given by

i P Livee

pd=1,p nontriv.

Its additive translate by c is then
6= P Leouer

pd=1,p nontriv.

So what we must show is that for any ¢ # 0, no L,.)(g(z+c)) is isomor-
phic to any L£(,,\)(y(z)), for any two nontrivial, not necessarily distinct,
characters p; and p; of order dividing d. Since the polynomials g(z) and
g(z + ¢) have no common zero, this would be obvious if we knew that
each L), )(g(-+c)) Were ramified at every zero of g(z + ¢), and that each
L(5ix)(s(z)) Were ramified at every zero of g(z). In case (4a), the fact
that n and d are relatively prime implies that each character p;x has
order at least n. As ¢ has degree e < n, every zero of g has multiplicity
at most e < n, and hence we do indeed have the asserted ramification.
In case (4b), d is prime as well as prime to n, so each character p;y has
order precisely nd. In case (4b), g has degree e < nd, and we conclude
by the same ramification argument as in case (4a).

In case (5), we use the fact [Ka-ACT, 5.15] that the geometric mon-
odromy group G, eom of the sheaf H is either the symplectic group
Sp(d — 1) in case (5a), or that its identity component G, eom® is
SL(d — 1), in cases (5b) and (5¢). We retain only the consequence
that the sheaf H is geometrically Lie-irreducible, and hence its pull-
back by any nonconstant map is geometrically irreducible. So G is itself
geometrically irreducible. Just as above, it suffices to show that for any
choice of ¢ # 0, on any dense open set U in A' @ k on which both G
and TG are lisse, these two sheaves are not isomorphic. For this, we
argue by contradiction, using the argument alrady used in case (2) of
paying attention to the set S of finite singularities of G,,;4. Because
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e(d — 1) < p, we conclude that S is empty,i.e., that G4 is lisse on
Al. Since G4 is also tame at oo, it must be geometrically constant.
But as it has rank d — 1 > 2, this geometric constancy contradicts its
geometric irreducibility.
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