ON A QUESTION OF LILLIAN PIERCE

NICHOLAS M. KATZ

ABSTRACT. We establish estimates for certain families of character sums over finite fields, including those which arise in Lillian Pierce's recent work [P] on estimating the 3-part of the class number of quadratic fields.

1. Introduction, the basic setting, and statement of the main result

Let k be a finite field of characteristic p and cardinality q, ψ a non-trivial \mathbb{C}^{\times} -valued additive character of k, and χ a nontrivial \mathbb{C}^{\times} -valued multiplicative character of k^{\times} . We define n := the order of χ . We extend χ to a function on all of k by defining $\chi(0) := 0$. Let f(x) and g(x) in k[x] be two polynomials over k in one variable x, each of strictly positive degree. We define

$$d := deg(f), e := deg(g).$$

For each element a in k, we define a \mathbb{C} -valued function G_a on k by

$$G_a(z) := \sum_{x \in b} \chi(-f(x) + g(z))\psi(ax).$$

To provide some context, recall the following lemma, which results in a by now well known way from the truth, due to Weil [We-CA], of the Riemann Hypothesis for curves over finite fields, and its application, already known to Davenport and Hasse [Dav-Ha], to the estimation of abelian character sums.

Lemma 1.1. Suppose that either χ^d is nontrivial, or that a is nonzero. Then we have the estimate

$$|G_a(z)| \le dq^{1/2}.$$

We are interested in the L^2 norm of the function G_a , and in the inner product of G_a both with additive translates of itself and with additive character "twists" of additive translates of itself. Denote by $\overline{G_a}$ the

Date: April 15, 2004.

complex conjugate of the function G_a . For $a, b, c \in k$, we define the complex character sum

$$I(a,b,c) := \sum_{z \in k} G_a(z) \overline{G_a}(z+c) \psi(bz).$$

In view of the lemma above, we have the following "trivial estimate" for the character sum I(a, b, c).

Lemma 1.2. Suppose that either χ^d is nontrivial, or that a is nonzero. Then we have the estimate

$$|I(a,b,c)| \le d^2q^2.$$

Our main result gives conditions under which we can improve on the above "trivial estimate", and obtain the improved estimate

$$|I(a,b,c)| \le 2de(d-1)q^{3/2}.$$

Our method requires that the characteristic p be large compared to d and to e. Fortunately, this is not a problem in Pierce's applications, where d and e are fixed, and p varies. [Indeed, in her applications, χ is the quadratic character, f(x) is $-4x^3$, and g(z) is δz^2 for some nonzero $\delta \in k$.]

Theorem 1.3. We have the estimate

$$|I(a,b,c)| \le 2de(d-1)q^{3/2}.$$

in each of the following five situations:

- (1) $ab \neq 0$, and e < d < p,
- (2) $ac \neq 0$, b = 0, e < d < p, gcd(e, d) = 1, and e(d 1) < p,
- (3) $a = 0, b \neq 0, d$
- (4) a = b = 0, $c \neq 0$, the polynomials g(z) and g(z + c) in k[z] are relatively prime, $f(x) = \alpha x^d$ for some nonzero $\alpha \in k$, n and d are relatively prime, and either
 - (4a) e < n or
 - (4b) d is prime and e < nd.
- (5) a = b = 0, $c \neq 0$, e < d < p, $d \geq 3$, e(d-1) < p, χ^d is nontrivial, the the polynomial f(x) is "supermorse" (i.e., its derivative f'(x) has d-1 distinct zeroes in \overline{k} , which map by f to d-1 distinct points), and either
 - (5a) χ is the quadratic character χ_2 , or
 - (5b) d > 5, or
 - (5c) d > 3 and $(\chi \chi_2)^3$ is nontrivial.

2. Proof of the main result: basic ideas

Recall that n is the order of χ . Thus the function G_a takes values in the cyclotomic field $K := \mathbb{Q}(\zeta_n, \zeta_p)$, and the character sum I(a, b, c) lies in K. We choose a prime number $\ell \neq p$, and a field embedding of K into $\overline{\mathbb{Q}}_{\ell}$. We introduce the K-valued function H_a on k defined by

$$H_a(t) := \sum_{x \in k} \chi(t - f(x))\psi(ax).$$

Thus we have the tautological relation

$$G_a(z) = H_a(g(z)).$$

We first interpret the function H_a as the trace function of an ℓ -adic sheaf \mathcal{H}_a on the affine line \mathbb{A}^1 over k. The sheaf \mathcal{H}_a turns out to be a "middle additive convolution" in the sense of [Ka-RLS, Chapter 2]. The function G_a is then the trace function of the pullback sheaf

$$\mathcal{G}_a := q^* \mathcal{H}_a$$
.

We then analyze the possible interactions of the sheaf \mathcal{G}_a with various twisted additive translates of itself. We then use Deligne's fundamental results [De-Weil II, 3.3] to obtain the asserted estimates.

3. Proof of the main result in cases (1) and (2)

What cases (1) and (2) have in common is that $a \neq 0$. At the expense of replacing the originally chosen nontrivial additive character ψ by the the equally nontrivial additive character

$$\psi_a(x) := \psi(ax),$$

and replacing b by b/a, we reduce to the case a = 1. We denote by \mathcal{L}_{ψ} the Artin-Schreier sheaf on \mathbb{A}^1 over k corresponding to ψ . We introduce the sheaf \mathcal{F} on the w-line \mathbb{A}^1 over k defined by

$$\mathcal{F} := f_{\star} \mathcal{L}_{\psi}.$$

We denote by \mathcal{L}_{χ} the Kummer sheaf on \mathbb{G}_m over k corresponding to χ , extended by zero across the origin. Write the function H_1 on k as

$$H_1(t) := \sum_{x \in k} \chi(t - f(x))\psi(x)$$

$$= \sum_{w \in k} \chi(t - w) \sum_{x \in k, f(x) = w} \psi(x)$$

$$= \sum_{w \in k} \chi(t - w) Trace(Frob_{k,w}|\mathcal{F})$$

$$= \sum_{w \in k} Trace(Frob_{k,w} | \mathcal{L}_{\chi(t-w)} \otimes \mathcal{F}).$$

This means precisely that the function H_1 on k is the trace function, at k-rational points, of the lower! additive convolution of the sheaves \mathcal{L}_{χ} and \mathcal{F} , or what is the same, of the lower! additive convolution, say M,

$$M := \mathcal{L}_{\chi}[1] \star_{+,!} \mathcal{F}[1]$$

of the perverse sheaves $\mathcal{L}_{\chi}[1]$ and $\mathcal{F}[1]$ on \mathbb{A}^1 over k. Both of these perverse sheaves are visibly middle extensions (remember χ is nontrivial) which, as perverse sheaves, are pure of weight one. Both are geometrically irreducible: this is obvious for $\mathcal{L}_{\chi}[1]$, and it holds for $\mathcal{F}[1]$ because \mathcal{F} has generic rank d, and all its ∞ -slopes are 1/d, so is already irreducible under the inertia group $I(\infty)$, cf. [Ka-GKM, 1.14], and has Swan conductor 1 at ∞ . As d > 1, this irreducibility already guarantees that $\mathcal{F}[1]$ has "condition \mathcal{P} " in the sense of [Ka-RLS, 2.6.2], thanks to [Ka-RLS, 2.6.13-15]. Therefore, by [Ka-RLS, 2.9.7], the additive! convolution

$$M := \mathcal{L}_{\chi}[1] \star_{!,+} \mathcal{F}[1]$$

is itself a perverse sheaf on \mathbb{A}^1 over k. Looking fibre by fibre, we see that M is of the form $\mathcal{H}[1]$, with \mathcal{H} a single sheaf, which is, on a dense open set, both lisse and pure of weight one. Thus M is, on a dense open set, pure of weight 2 as a perverse sheaf. We next claim that M is in fact the "middle additive convolution" of $\mathcal{L}_{\chi}[1]$ and $\mathcal{F}[1]$. Denote by M_{\star} the additive \star convolution

$$M_{\star} := \mathcal{L}_{\chi}[1] \star_{+,\star} \mathcal{F}[1].$$

then we know from [Ka-RLS, 2.10.10] and [Ka-MMP, 6.5.4, 3)] that the kernel Ker of the canonical "forget supports" map from M to M_{\star} is a perverse sheaf of the form (a lisse sheaf on \mathbb{A}^{1})[1] which is mixed of weight ≤ 1 and which is geometrically a successive extension of various $\mathcal{L}_{\psi_{a}}[1]$ sheaves. Since M is generically pure of weight 2, while Ker is everywhere lisse and of strictly lower weight, it follows that Ker = 0, and hence that M is in fact the middle additive convolution

$$M := \mathcal{L}_{\chi}[1] \star_{+,mid} \mathcal{F}[1].$$

How can we exploit this? We know, from [Ka-RLS, 2.9.7. 2)] and [Ka-MMP, 6.5.4, 2)] respectively, that $M = \mathcal{H}[1]$ is geometrically irreducible as a perverse sheaf, and is pure of weight 2. This means in turn that \mathcal{H} is mixed of weight at most 1, and that it is the middle extension from some open dense set of a geometrically irreducible lisse sheaf which is pure of weight 1. Moreover, it is an exercise, using [Ka-RLS, 3.3.5], to compute both the generic rank of $M = \mathcal{H}[1]$, and all its local monodromies, given

the same data for \mathcal{F} . Recall that \mathcal{F} is a middle extension of generic rank d, all of whose ∞ -slopes are 1/d. Because d := deg(f) < p, and \mathcal{L}_{ψ} is lisse on \mathbb{A}^1 , \mathcal{F} is tamely ramified outside the point at ∞ , and the sum of its drops over all \overline{k} -valued points of \mathbb{A}^1 is just d-1, the total number of zeroes, counting multiplicities, of the derivative f'(x)of f at all \overline{k} - valued points of \mathbb{A}^1 . It is then routine to conclude, using [Ka-RLS, 3.3.5], that \mathcal{H} has generic rank d, is tame outside ∞ , and has all ∞ -slopes 1/d. Moreover, the drops of \mathcal{H} at the k-valued points of \mathbb{A}^1 occur precisely at the points where \mathcal{F} had drops, and the drops at each such point are the same for \mathcal{H} and for \mathcal{F} . These drop points are the critical values of the polynomial f, i.e. the values $f(\alpha)$ at the zeroes α of the derivative f'(x). At each critical value $f(\alpha)$ of f, the drop at $f(\alpha)$ is the sum, over all zeroes γ in k of the polynomial $f(x) - f(\alpha)$, of the expression (multiplicity of γ as a zero of $f(x) - f(\alpha)$) - 1. In particular, the sum of all the drops of \mathcal{H} at finite distance is just d-1, the total number, counting multiplicity, of zeroes of the derivative f'(x).

With this information established about \mathcal{H} , we now turn to the sheaf $\mathcal{G} := \mathcal{G}_1 := g^*\mathcal{H}$ on \mathbb{A}^1 . It is mixed of weight at most 1, and on a dense open set it is lisse and pure of weight 1. It has generic rank d, it is tame at all \overline{k} -valued points of \mathbb{A}^1 , and all of its ∞ -slopes are e/d. Its only drops at \overline{k} -valued points of \mathbb{A}^1 are at the inverse images by g of the points at which \mathcal{H} drops, and at such an inverse image point, the size of the drop is unchanged. Since g is a polynomial of degree e, there are at most e(d-1) finite points at which \mathcal{G} drops, and the sums of all its drops at finite points is at most e(d-1). Moreover, the sheaf \mathcal{G} has no nonzero punctual sections (as this was already true of \mathcal{H} , being a middle extension sheaf).

Let us now treat cases (1) and (2). Since e < d, \mathcal{G} has all its ∞ -slopes e/d < 1. Similarly, $\overline{\mathcal{G}}$, the sheaf formed using the characters $\overline{\chi}$ and $\overline{\psi}$, but the same f and g, has the same ramification properties as \mathcal{G} . The effect of any additive translation

$$T_c: z \to z + c$$

on $\overline{\mathcal{G}}$ is just to translate the finite singularities, keeping the same drops. The ∞ -slopes remain e/d < 1. After our reduction to the case a = 1 explained above, we must estimate the quantity I(1,b,c) This quantity is the sum of the traces of Frobenius at all the k-rational points of \mathbb{A}^1 of the sheaf

$$\mathcal{E}_b := \mathcal{G} \otimes T_c^{\star} \overline{\mathcal{G}} \otimes \mathcal{L}_{\psi_b}.$$

Notice that

$$\mathcal{E}_b = \mathcal{E}_0 \otimes \mathcal{L}_{\psi_b}.$$

This sheaf \mathcal{E}_0 is mixed of weight at most 2, it has no nonzero punctual sections, it is tame over \mathbb{A}^1 , and the sum of its finite drops is at most

$$2(gen.rk.(\mathcal{G})) \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{G}) = 2de(d-1).$$

All of the d^2 ∞ -slopes of \mathcal{E}_0 are $\leq e/d < 1$.

In case (1), we have $b \neq 0$, and hence all of the $d^2 \infty$ - slopes the sheaf \mathcal{E}_b are 1. In particular, \mathcal{E}_b is totally wild at ∞ , so we have

$$H_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_b) = 0.$$

We also have the vanishing of the H_c^0 (because there are no nonzero punctual sections), and so the Lefschetz Trace formula gives

$$I(a,b,c) = -Trace(Frob_k|H_c^1(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_b)).$$

By Deligne's fundamental result, this H_c^1 is mixed of weight at most 3 (because \mathcal{E}_b is mixed of weight at most 2), and so we get the estimate

$$|I(a,b,c)| \leq (\dim \mathbf{H}_{\mathbf{c}}^1) \mathbf{q}^{3/2} = -\chi_{\mathbf{c}}(\mathbb{A}^1 \otimes_{\mathbf{k}} \overline{\mathbf{k}}, \mathcal{E}_{\mathbf{b}}) \mathbf{q}^{3/2},$$

in the case when $b \neq 0$. In this case, the "generic rank" term cancels the " $Swan_{\infty}$ " term in the Euler-Poincare formula,

$$\chi_c(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_b) = gen.rk.(\mathcal{E}_b) - \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{E}_b) - Swan_{\infty}(\mathcal{E}_b),$$

and we find

$$-\chi_c(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_b) = \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{E}_b) \le 2de(d-1).$$

So in case (1) we have the asserted estimate

$$|I(a,b,c)| \le 2de(d-1)q^{3/2}$$

We now turn to the proof of case (2). The basic idea for treating this case is to pay attention to the location of the finite singularities of the sheaf \mathcal{G} . Here a remains nonzero, b is now zero, but c is nonzero. We must estimate the quantity I(1,0,c) This quantity is the sum of the traces of Frobenius at all the k-rational points of \mathbb{A}^1 of the sheaf

$$\mathcal{E}_0 := \mathcal{G} \otimes T_c^* \overline{\mathcal{G}}.$$

This sheaf \mathcal{E}_0 is mixed of weight at most 2, it has no nonzero punctual sections, it is tame over \mathbb{A}^1 , and the sum of its finite drops is at most

$$2(gen.rk.(\mathcal{G})) \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{G}) = 2de(d-1).$$

All of the d^2 ∞ -slopes of \mathcal{E}_0 are $\leq e/d < 1$, and hence we have the inequality

$$Swan_{\infty}(\mathcal{E}_0) \leq ed.$$

We rewrite the Euler-Poincare formula

$$\chi_c(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_0) = gen.rk.(\mathcal{E}_0) - \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{E}_0) - Swan_{\infty}(\mathcal{E}_0),$$

as

$$-\chi_c(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_0) = \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{E}_0) + Swan_{\infty}(\mathcal{E}_0) - d^2,$$

so we have the inequality

$$-\chi_c(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_0) \le 2de(d-1) + ed - d^2 \le 2de(d-1),$$

this last equality simply because e < d. We have already noted that the sheaf \mathcal{E}_0 is mixed of weight at most 2, and has no nonzero punctual sections. Thus its H_c^0 vanishes, and exactly as in case (1) above, it remains only to prove that

$$H_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_0) = 0.$$

But recall that

$$\mathcal{E}_0 := \mathcal{G} \otimes T_c^{\star} \overline{\mathcal{G}}.$$

By assumption in case (2), the integers e and d are relatively prime. Therefore the d ∞ -slopes of \mathcal{G} , all being e/d, have exact denominator d, and hence [Ka-GKM, 1.14] \mathcal{G} is irreducible as a representation of $I(\infty)$, the inertia group at ∞ . Consequently, on any dense open set U of $\mathbb{A}^1 \otimes_k \overline{k}$ on which the sheaf \mathcal{G} is lisse, this sheaf is geometrically irreducible. As H_c^2 is a birational invariant, what we must prove is that for any $c \neq 0$, and for any dense open set U of $\mathbb{A}^1 \otimes_k \overline{k}$ on which the sheaf \mathcal{G} and its additive translate $T_c^{\star}\mathcal{G}$ are both lisse, these two sheaves are not geometrically isomorphic. We argue by contradiction. If \mathcal{G} and its additive translate $T_c^{\star}\mathcal{G}$ are geometrically isomorphic on some dense open set, then their extensions by direct image to $\mathbb{A}^1 \otimes_k k$, say \mathcal{G}_{mid} and $T_c^{\star}\mathcal{G}_{mid}$ are isomorphic middle extension sheaves on $\mathbb{A}^1 \otimes_k \overline{k}$, and hence they have the same set S of "finite singularities", i.e., the same set S of points in $\mathbb{A}^1 \otimes_k k$ at which they fail to be lisse. Thus the set S of finite singularities is equal to its additive translate by c. Now the additive group $\mathbb{F}_p c$ generated by c acts freely on $\mathbb{A}^1(\overline{k})$ by additive translation, so from the stability of the set S under this free action, we infer the congruence $Card(S) \equiv 0 \mod p$. We have already noted that the literal sheaf \mathcal{G} on $\mathbb{A}^1 \otimes_k \overline{k}$ has at most e(d-1) finite singularities. Therefore the middle extension sheaf \mathcal{G}_{mid} , whose finite singularities

are among those of \mathcal{G} , itself has at most e(d-1) finite singularities. By assumption in case (2), we have

$$e(d-1) < p.$$

Thus we infer that S is empty, i.e., that the sheaf \mathcal{G}_{mid} is lisse of rank d on $\mathbb{A}^1 \otimes_k \overline{k}$. This now leads to a contradiction as follows. From its $I(\infty)$ -slopes all being e/d, we have already noted that \mathcal{G}_{mid} is $I(\infty)$ -irreducible. Therefore \mathcal{G}_{mid} is lisse of rank d, geometrically irreducible and nonconstant. So its only possibly nonzero compact cohomology group on $\mathbb{A}^1 \otimes_k \overline{k}$ is H_c^1 . Thus its Euler characteristic is non-positive. But this Euler characteristic is

$$rank(\mathcal{G}_{mid}) - Swan_{\infty}(\mathcal{G}_{mid}) = d - e \ge 1,$$

contradiction. This concludes the proof of case (2).

4. Proof of the main result in cases (3), (4), and (5)

What these cases have in common is that a = 0. In this situation, the relevant sheaf \mathcal{F} on the w-line \mathbb{A}^1 over k we need to begin with is

$$\mathcal{F} := Ker(Trace : f_{\star} \overline{\mathbb{Q}_{\ell}} \to \overline{\mathbb{Q}_{\ell}}).$$

The function H_0 on k is

$$H_0(t) := \sum_{x \in k} \chi(t - f(x))$$

$$= \sum_{w \in k} \chi(t - w) \sum_{x \in k, f(x) = w} 1$$

$$= \sum_{w \in k} \chi(t - w)(-1 + \sum_{x \in k, f(x) = w} 1),$$

this last equality because χ is nontrivial. Thus

$$H_0(t) = \sum_{w \in k} Trace(Frob_{k,w} | \mathcal{L}_{\chi(t-w)} \otimes \mathcal{F}).$$

This means precisely that the function H_0 on k is the trace function, at k-rational points, of the lower! additive convolution of the sheaves \mathcal{L}_{χ} and \mathcal{F} , or what is the same, of the lower! additive convolution, say M,

$$M := \mathcal{L}_{\chi}[1] \star_{+,!} \mathcal{F}[1]$$

of the perverse sheaves $\mathcal{L}_{\chi}[1]$ and $\mathcal{F}[1]$ on \mathbb{A}^1 over k. Both of these perverse sheaves are visibly middle extensions (remember χ is nontrivial) which, as perverse sheaves, are pure of weight one. While $\mathcal{L}_{\chi}[1]$ is geometrically irreducible, $\mathcal{F}[1]$ need not be (and indeed is certainly not in Pierce's original question), but it is, in any case, geometrically

semisimple. Because d < p, the perverse sheaf $\mathcal{F}[1]$ is everywhere tamely ramified. We claim it satisfies "condition \mathcal{P} " in the sense of [Ka-RLS, 2.6]. Indeed, by tameness it contains, geometrically, no sheaf \mathcal{L}_{ψ_t} for any nonzero t. It contains no constant sheaf either, because by Frobenius reciprocity, the sheaf $f_*\overline{\mathbb{Q}_\ell}$ contains just one copy of the constant sheaf. So once again by [Ka-RLS, 2.6], the additive! convolution

$$M := \mathcal{L}_{\chi}[1] \star_{!,+} \mathcal{F}[1]$$

is itself a perverse sheaf on \mathbb{A}^1 over k. Looking fibre by fibre, and remembering that in cases (3) and (4) χ^d is assumed nontrivial, we see that M is of the form $\mathcal{H}[1]$, with \mathcal{H} a single sheaf, which is, on a dense open set, both lisse of rank d-1 and pure of weight one. Thus M is, on a dense open set, pure of weight 2 as a perverse sheaf. Exactly as in the previous section, this generic purity shows that M is the "middle additive convolution" of $\mathcal{L}_{\chi}[1]$ and $\mathcal{F}[1]$. We know, from [Ka-RLS, 2.10.10] and [Ka-MMP, 6.5.4, 2)] respectively, that $M = \mathcal{H}[1]$ is pure of weight 2 as a perverse sheaf, and hence geometrically semisimple. This means in turn that \mathcal{H} is mixed of weight at most 1, and that it is the middle extension from some open dense set of a geometrically semisimple lisse sheaf which is pure of weight 1. Moreover, it is an exercise, using [Ka-RLS, 3.3.5], to compute both the generic rank of $M = \mathcal{H}[1]$, (which in our case we know "by inspection" to be d-1) and all its local monodromies, given the same data for \mathcal{F} . Recall that \mathcal{F} is an everywhere tame middle extension of generic rank d-1. The sum of its drops over all k-valued points of \mathbb{A}^1 is just d-1, the total number of zeroes, counting multiplicities, of the derivative f'(x) of f at all \overline{k} -valued points of \mathbb{A}^1 . It is then routine to conclude, using [Ka-RLS, [3.3.5], that \mathcal{H} is everywhere tame. Moreover, the drops of \mathcal{H} at the \overline{k} -valued points of \mathbb{A}^1 occur precisely at the points where \mathcal{F} had drops, and the drops at each such point are the same for \mathcal{H} and for \mathcal{F} . These drop points are the critical values of the polynomial f, i.e. the values $f(\alpha)$ at the zeroes α of the derivative f'(x). At each critical value $f(\alpha)$ of f, the drop at $f(\alpha)$ is the sum, over all zeroes γ in \overline{k} of the polynomial $f(x) - f(\alpha)$, of the expression (multiplicity of γ as a zero of $f(x) - f(\alpha)$ - 1. In particular, the sum of all the drops of \mathcal{H} at finite distance is just d-1, the total number, counting multiplicity, of zeroes of the derivative f'(x).

With this information established about \mathcal{H} , we now turn to the sheaf $\mathcal{G} := \mathcal{G}_1 := g^*\mathcal{H}$ on \mathbb{A}^1 . It is mixed of weight at most 1, and on a dense open set it is lisse and pure of weight 1. It has generic rank d-1, and everywhere tame. Its only drops at \overline{k} -valued points of \mathbb{A}^1 are at the inverse images by g of the points at which \mathcal{H} drops, and at such

an inverse image point, the size of the drop is unchanged. Since g is a polynomial of degree e, there are at most e(d-1) finite points at which \mathcal{G} drops, and the sums of all its drops at finite points is at most e(d-1). Moreover, the sheaf \mathcal{G} has no nonzero punctual sections (as this was already true of \mathcal{H} , being a middle extension sheaf).

We can now treat cases (3), (4), and (5). The sheaf $\overline{\mathcal{G}}$, the sheaf formed using the character $\overline{\chi}$, but the same f and g, has the same ramification properties as \mathcal{G} . The effect of any additive translation

$$T_c: z \to z + c$$

on $\overline{\mathcal{G}}$ is just to translate the finite singularities, keeping the same drops. We must estimate the quantity I(0,b,c) This quantity is the sum of the traces of Frobenius at all the k-rational points of \mathbb{A}^1 of the sheaf

$$\mathcal{E}_b := \mathcal{G} \otimes T_c^{\star} \overline{\mathcal{G}} \otimes \mathcal{L}_{\psi_b}.$$

Notice that

$$\mathcal{E}_b = \mathcal{E}_0 \otimes \mathcal{L}_{\psi_b}$$
.

This sheaf \mathcal{E}_0 is mixed of weight at most 2, it has no nonzero punctual sections, it is everywhere tame, and the sum of its finite drops is at most

$$2(gen.rk.(\mathcal{G})) \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{G}) = 2e(d-1)^2.$$

In case (3), we have $b \neq 0$, and hence \mathcal{E}_b is totally wild at ∞ , with all breaks 1. So $H_c^i(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_b)$ vanishes for $i \neq 1$. The dimension of the H_c^1 is given by the Euler-Poincare formula, in which the "generic rank" term is cancelled by the $Swan_{\infty}$ term, and we find

$$dim H_c^1 = -\chi(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_b) = \sum_{x \in \mathbb{A}^1(\overline{k})} drop_x(\mathcal{E}_b) \le 2e(d-1)^2.$$

So in case (3) we find the estimate

$$|I(0,b,c)| \le 2e(d-1)^2 q^{3/2}$$

which is in fact a slight improvement over the asserted estimate

$$|I(0,b,c)| \le 2ed(d-1)q^{3/2}.$$

In case (4), we have a=b=0, but $c\neq 0$. In this case we have

$$-\chi(\mathbb{A}^{1} \otimes_{k} \overline{k}, \mathcal{E}_{0}) = -(d-1)^{2} + \sum_{x \in \mathbb{A}^{1}(\overline{k})} drop_{x}(\mathcal{E}_{0}) \leq -(d-1)^{2} + 2e(d-1)^{2} \leq 2ed(d-1).$$

It remains to show that $H_c^2(\mathbb{A}^1 \otimes_k \overline{k}, \mathcal{E}_0)$ vanishes, or equivalently, that on any dense open set U in $\mathbb{A}^1 \otimes_k \overline{k}$ on which both \mathcal{G} and $T_c^*\mathcal{G}$ are lisse (remember both are geometrically semisimple, by purity), these two

sheaves have no irreducible constituent in common. Because we are in case (4), f is just a monomial of degree d, and consequently \mathcal{F} is, geometrically, the extension by zero of the lisse sheaf on $\mathbb{G}_m \otimes_k \overline{k}$ given by

$$\mathcal{F}\cong igoplus_{ad=1}^{d-1} igoplus_{amantois}^{d} \mathcal{L}_{
ho}$$

 $\mathcal{F} \cong \bigoplus_{\rho^d=1, \rho \ nontriv.} \mathcal{L}_{\rho}.$ Hence its middle convolution with \mathcal{L}_{χ} is given by

$$\mathcal{H}\cong igoplus_{
ho^d=1,
ho\ nontriv.} \mathcal{L}_{
ho\chi}.$$

[Remember that χ^d is nontrivial, so each character $\rho\chi$ which appears in the above sum is nontrivial. The pullback by g is then given by

$$\mathcal{G} \cong \bigoplus_{\rho^d=1, \rho \ nontriv.} \mathcal{L}_{(\rho\chi)(g(z))}.$$

Its additive translate by c is then

$$T_c^*\mathcal{G} \cong \bigoplus_{\rho^d=1, \rho \ nontriv.} \mathcal{L}_{(\rho\chi)(g(z+c))}.$$

So what we must show is that for any $c \neq 0$, no $\mathcal{L}_{(\rho_i\chi)(g(z+c))}$ is isomorphic to any $\mathcal{L}_{(\rho_i\chi)(g(z))}$, for any two nontrivial, not necessarily distinct, characters ρ_i and ρ_j of order dividing d. Since the polynomials g(z) and g(z+c) have no common zero, this would be obvious if we knew that each $\mathcal{L}_{(\rho_i\chi)(g(z+c))}$ were ramified at every zero of g(z+c), and that each $\mathcal{L}_{(\rho_i\chi)(g(z))}$ were ramified at every zero of g(z). In case (4a), the fact that n and d are relatively prime implies that each character $\rho_i \chi$ has order at least n. As g has degree e < n, every zero of g has multiplicity at most e < n, and hence we do indeed have the asserted ramification. In case (4b), d is prime as well as prime to n, so each character $\rho_i \chi$ has order precisely nd. In case (4b), g has degree e < nd, and we conclude by the same ramification argument as in case (4a).

In case (5), we use the fact [Ka-ACT, 5.15] that the geometric monodromy group G_geom of the sheaf \mathcal{H} is either the symplectic group Sp(d-1) in case (5a), or that its identity component G_qeom^0 is SL(d-1), in cases (5b) and (5c). We retain only the consequence that the sheaf \mathcal{H} is geometrically Lie-irreducible, and hence its pullback by any nonconstant map is geometrically irreducible. So \mathcal{G} is itself geometrically irreducible. Just as above, it suffices to show that for any choice of $c \neq 0$, on any dense open set U in $\mathbb{A}^1 \otimes_k k$ on which both \mathcal{G} and $T_c^{\star}\mathcal{G}$ are lisse, these two sheaves are not isomorphic. For this, we argue by contradiction, using the argument alrady used in case (2) of paying attention to the set S of finite singularities of \mathcal{G}_{mid} . Because

e(d-1) < p, we conclude that S is empty,i.e., that \mathcal{G}_{mid} is lisse on \mathbb{A}^1 . Since \mathcal{G}_{mid} is also tame at ∞ , it must be geometrically constant. But as it has rank $d-1 \geq 2$, this geometric constancy contradicts its geometric irreducibility.

REFERENCES

- [Dav-Ha] Davenport, H., and Hasse, H., Die Nullstellen der Kongruenz zetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172, 1934, 151-182, reprinted in *The Collected Works of Harold Davenport* (ed. Birch, Halberstam, Rogers), Academic Press, 1977.
- [De-Weil II] Deligne, P., La Conjecture de Weil II, Pub. Math. I.H.E.S. 52, 1981, 313-428.
- [Gro-FL] Grothendieck, A., Formule de Lefschetz et rationalite des fonctions L, Seminaire Bourbaki 1964-65, Expose 279, reprinted in Dix Exposes sur la cohomologie des schemas, North-Holland, 1968.
- [Ka-ACT] Katz, N., Affine cohomological transforms, perversity and monodromy, JAMS, Vol. 6, No. 1, January, 1993, 149-222. Annals of Math. Study 116, Princeton Univ. Press, 1988.
- [Ka-GKM] Katz, N., Gauss sums, Kloosterman sums, and monodromy groups, Annals of Math. Study 116, Princeton Univ. Press, 1988.
- [Ka-MMP] Katz, N., Moments, Monodromy, and Perversity: a Diophantine Perspective, to appear as an Annals of Math. Study, available as preprint on www.math.princeton.edu/nmk.
- [Ka-RLS] Katz, N., Rigid Local Systems, Annals of Math. Study 138, Princeton Univ. Press, 1995.
- [P] Pierce, L., Master's Thesis, Oxford University, 2004.
- [Ray] Raynaud, M., Caracteristique d'Euler-Poincare d'un Faisceau et cohomologie des varietes abeliennes, Expose 286 in Seminaire Bourbaki 1964/65, W.A. Benjamin, New York, 1966.
- [We-CA] Weil, A., Courbes algebriques et varietes abeliennes, Hermann, Paris, 1971.

PRINCETON UNIVERSITY, MATHEMATICS, FINE HALL, NJ 08544-1000, USA *E-mail address*: nmk@math.princeton.edu