Proof of Theorem 98b

The theorem to be proved is

$$x + 0 = 0 + x$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x+0) = (0+x)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 + x = x + 0$$
 from H:x

1:
$$x + 0 = x$$
 from $12; x$

2:
$$0 + x = x$$
 from $97;x$

Equality substitutions:

3:
$$\neg x + 0 = x \lor 0 + x = x + 0 \lor \neg 0 + x = x$$

Inferences:

4:
$$\neg x + 0 = x \lor \neg 0 + x = x$$
 by

$$0: \neg 0 + x = x + 0$$

3:
$$\neg x + 0 = x \lor 0 + x = x + 0 \lor \neg 0 + x = x$$

5:
$$\neg 0 + x = x$$
 by

1:
$$x + 0 = x$$

4:
$$\neg x + 0 = x \lor \neg 0 + x = x$$

$$6: QEA$$
 by

2:
$$0 + x = x$$

$$5: \neg 0 + x = x$$