Proof of Theorem 97i

The theorem to be proved is
$0+x=x \quad \rightarrow \quad 0+\mathrm{S} x=\mathrm{S} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(0+x)=(x)] \quad \& \quad[\neg(0+(\mathrm{S} x))=(\mathrm{S} x)]]$

Special cases of the hypothesis and previous results:
$0: 0+x=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg 0+(\mathrm{S} x)=\mathrm{S} x$ from $\mathrm{H}: x$
2: $\quad \mathrm{S}(0+x)=0+(\mathrm{S} x) \quad$ from $\quad 12 ; 0 ; x$

Equality substitutions:

3: $\neg 0+x=x \quad \vee \quad \neg \mathrm{~S}(0+x)=0+(\mathrm{S} x) \quad \vee \quad \mathrm{S}(x)=0+(\mathrm{S} x)$

Inferences:

4: $\neg \mathrm{S}(0+x)=0+(\mathrm{S} x) \vee 0+(\mathrm{S} x)=\mathrm{S} x \quad$ by
$0: 0+x=x$
3: $\neg 0+x=x \quad \vee \quad \neg \mathrm{~S}(0+x)=0+(\mathrm{S} x) \quad \vee \quad 0+(\mathrm{S} x)=\mathrm{S} x$
5: $\quad \neg \mathrm{S}(0+x)=0+(\mathrm{S} x) \quad$ by
1: $\neg 0+(\mathrm{S} x)=\mathrm{S} x$
4: $\neg \mathrm{S}(0+x)=0+(\mathrm{S} x) \vee 0+(\mathrm{S} x)=\mathrm{S} x$
6: $Q E A$ by
2: $\mathrm{S}(0+x)=0+(\mathrm{S} x)$
5: $\neg \mathrm{S}(0+x)=0+(\mathrm{S} x)$

