Proof of Theorem 81

The theorem to be proved is

$$Sx \le y \rightarrow x < y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(Sx) \le (y)]$$
 & $[\neg (x) < (y)]]$

Special cases of the hypothesis and previous results:

0:
$$Sx \le y$$
 from H:x:y

1:
$$\neg x < y$$
 from H:x:y

2:
$$x < y \quad \forall \quad \neg \ x \le y \quad \forall \quad y = x \quad \text{from} \quad \underline{56}^{<-}; x; y$$

3:
$$x \leq Sx$$
 from 63; x

4:
$$\neg x \leq Sx \lor \neg Sx \leq y \lor x \leq y$$
 from 73; x ; Sx ; y

5:
$$\neg Sx \le x \lor (Sx) - x = 0$$
 from $\underline{55}^{\Rightarrow}; Sx; x$

6:
$$\neg (Sx) - x = 0$$
 from $21;x$

Equality substitutions:

7:
$$\neg y = x \quad \lor \quad \neg Sx \leq y \quad \lor \quad Sx \leq x$$

Inferences:

8:
$$\neg x \leq Sx \lor x \leq y$$
 by

$$0: Sx \leq y$$

4:
$$\neg x \leq Sx \lor \neg Sx \leq y \lor x \leq y$$

9:
$$\neg y = x \lor Sx \le x$$
 by

0:
$$Sx \leq y$$

7:
$$\neg y = x \quad \lor \quad \neg Sx \leq y \quad \lor \quad Sx \leq x$$

10:
$$\neg x \le y \lor y = x$$
 by

1:
$$\neg x < y$$

2:
$$x < y \quad \lor \quad \neg \ x \le y \quad \lor \quad y = x$$

11:
$$x \le y$$
 by

$$3: x \leq Sx$$

$$8: \neg x \leq Sx \lor x \leq y$$

12:
$$\neg Sx \le x$$
 by

6:
$$\neg (Sx) - x = 0$$

5:
$$\neg Sx \le x \lor (Sx) - x = 0$$

13:
$$y = x$$
 by

11:
$$x \leq y$$

10:
$$\neg x \leq y \quad \lor \quad y = x$$

14:
$$\neg y = x$$
 by

12:
$$\neg Sx \le x$$

9:
$$\neg y = x \lor Sx \le x$$

15:
$$QEA$$
 by

13:
$$y = x$$

$$14: \neg y = x$$