Proof of Theorem 79

The theorem to be proved is

$$\neg y \le x \rightarrow x < y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

$$\text{(H)} \quad \left[\left[\neg \; (y) \leq (x) \right] \quad \& \quad \left[\neg \; (x) < (y) \right] \right]$$

Special cases of the hypothesis and previous results:

0:
$$\neg y \le x$$
 from H:y:x

1:
$$\neg x < y$$
 from H:y:x

2:
$$x < y \quad \forall \quad y = x \quad \lor \quad y < x$$
 from $77; x; y$

3:
$$\neg y < x \quad \lor \quad y \le x$$
 from $\underline{56}$ \Rightarrow ; y ; x

4:
$$x \le x$$
 from 60; x

Equality substitutions:

5:
$$\neg y = x \lor y \le x \lor \neg x \le x$$

Inferences:

6:
$$\neg y < x$$
 by

$$0: \neg y \leq x$$

$$3: \neg y < x \quad \lor \quad y \leq x$$

7:
$$\neg y = x \lor \neg x \le x$$
 by

$$0: \neg y \leq x$$

5:
$$\neg y = x \quad \lor \quad y \leq x \quad \lor \quad \neg x \leq x$$

8:
$$y = x \lor y < x$$
 by

1:
$$\neg x < y$$

$$2: \ x < y \quad \lor \quad y = x \quad \lor \quad y < x$$

9:
$$\neg y = x$$
 by

$$4: x \leq x$$

7:
$$\neg y = x \lor \neg x \le x$$

- 10: y = x by
 - 6: $\neg y < x$
 - 8: $y = x \quad \lor \quad y < x$
- 11: QEA by
 - $9: \neg y = x$
 - 10: y = x