Proof of Theorem 79

The theorem to be proved is
$\neg y \leq x \quad \rightarrow \quad x<y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(y) \leq(x)] \quad \& \quad[\neg(x)<(y)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{llllll}
0: & \neg y \leq x & \text { from } & \mathrm{H}: y: x \\
1: & \neg x<y & \text { from } & \mathrm{H}: y: x \\
2: & x<y \quad \vee & y=x & \vee & y<x & \text { from }
\end{array} \underline{77 ; x ; y} \begin{array}{lllll}
3: & \neg y<x & \vee & y \leq x & \text { from } \\
\underline{56} & \\
& ; y ; x \\
4: & x \leq x & \text { from } & \underline{60} ; x
\end{array}
$$

Equality substitutions:

5: $\quad \neg y=x \quad \vee \quad y \leq x \quad \vee \quad \neg x \leq x$

Inferences:

6: $\neg y<x \quad$ by
0 : $\neg y \leq x$
3: $\neg y<x \vee y \leq x$
7: $\neg y=x \quad \vee \quad \neg x \leq x \quad$ by
0: $\neg y \leq x$
5: $\neg y=x \quad \vee \quad y \leq x \quad \vee \quad \neg x \leq x$
8: $y=x \quad \vee \quad y<x \quad$ by
1: $\neg x<y$
2: $x<y \vee \forall=x \quad \vee \quad y<x$
9: $\quad \neg y=x \quad$ by
4: $x \leq x$
7: $\neg y=x \quad \vee \quad \neg x \leq x$

10: $y=x \quad$ by
6: $\neg y<x$
8: $y=x \quad \vee \quad y<x$
11: $Q E A$ by 9: $\neg y=x$
10: $y=x$

