Proof of Theorem 78

The theorem to be proved is

 $x < y \quad \rightarrow \quad \neg \; y \leq x$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(x) < (y)] \& [(y) \le (x)]]$

Special cases of the hypothesis and previous results:

0:	x < y	from H:x:y
1:	$y \leq x$	from H:x:y
2:	$\neg \; x < y$	$\lor x \le y$ from <u>56</u> $\Rightarrow;x;y$
3:	$\neg \; x < y$	$\lor \neg y = x$ from <u>56</u> \Rightarrow ;x;y
4:	$\neg \; x \leq y$	$\lor \neg y \le x \lor y = x$ from <u>76</u> ;x;y

Inferences:

- 5: $x \le y$ by 0: x < y2: $\neg x < y \lor x \le y$
- 6: $\neg y = x$ by 0: x < y3: $\neg x < y \lor \neg y = x$
- 7: $\neg x \leq y \lor y = x$ by 1: $y \leq x$ 4: $\neg x \leq y \lor \neg y \leq x \lor y = x$
- 8: y = x by 5: $x \le y$ 7: $\neg x \le y \lor y = x$
- 9: QEA by 6: $\neg y = x$ 8: y = x