Proof of Theorem 78

The theorem to be proved is
$x<y \quad \rightarrow \quad \neg y \leq x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $[[(x)<(y)] \quad \& \quad[(y) \leq(x)]]$

Special cases of the hypothesis and previous results:

0: $\quad x<y$	from $\mathrm{H}: x: y$
1: $y \leq x$	from $\mathrm{H}: x: y$
2: $\neg x<y$	$\checkmark x \leq y \quad$ from $\quad \underline{56}{ }^{\rightarrow} ; x ; y$
3: $\neg x<y$	$\checkmark \neg y=x \quad$ from $\quad \underline{56}{ }^{\rightarrow} ; x ; y$
4: $\neg x \leq y$	$\vee \neg y \leq x \quad \vee \quad y=x \quad$ from

Inferences:

5: $x \leq y \quad$ by
0: $x<y$
2: $\neg x<y \quad \vee \quad x \leq y$
6: $\quad \neg y=x \quad$ by
0: $x<y$
3: $\neg x<y \quad \vee \quad \neg y=x$
7: $\quad \neg x \leq y \quad \vee \quad y=x \quad$ by
1: $y \leq x$
4: $\neg x \leq y \quad \vee \quad \neg y \leq x \quad \vee \quad y=x$
8: $y=x \quad$ by
5: $x \leq y$
7: $\neg x \leq y \quad \vee \quad y=x$
9: $Q E A$ by
6: $\neg y=x$
8: $y=x$

