Proof of Theorem 76

The theorem to be proved is

$$x \le y$$
 & $y \le x \rightarrow x = y$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \le (y)]$$
 & $[(y) \le (x)]$ & $[\neg (x) = (y)]]$

Special cases of the hypothesis and previous results:

0:
$$x \le y$$
 from H:x:y

1:
$$y \le x$$
 from H: $x:y$

2:
$$\neg y = x$$
 from H:x:y

3:
$$\neg x \le y \quad \lor \quad x - y = 0$$
 from $\underline{55}^{\rightarrow}; x; y$

4:
$$\neg y \le x \quad \lor \quad y - x = 0$$
 from $\underline{55} \Rightarrow ; y; x$

5:
$$\neg x - y = 0 \quad \lor \quad \neg y - x = 0 \quad \lor \quad y = x \quad \text{from} \quad \underline{30}; x; y$$

Inferences:

6:
$$x - y = 0$$
 by

$$0: x \leq y$$

$$3: \neg x \leq y \quad \lor \quad x - y = 0$$

7:
$$y - x = 0$$
 by

1:
$$y \leq x$$

$$4: \neg y \leq x \quad \lor \quad y - x = 0$$

8:
$$\neg x - y = 0 \quad \lor \quad \neg y - x = 0$$
 by

$$2: \neg y = x$$

5:
$$\neg x - y = 0 \quad \lor \quad \neg y - x = 0 \quad \lor \quad y = x$$

9:
$$\neg y - x = 0$$
 by

6:
$$x - y = 0$$

8:
$$\neg x - y = 0 \quad \lor \quad \neg y - x = 0$$

10:
$$QEA$$
 by

7:
$$y - x = 0$$

9:
$$\neg y - x = 0$$