Proof of Theorem 76

The theorem to be proved is
$x \leq y \quad \& \quad y \leq x \quad \rightarrow \quad x=y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(y)] \quad \& \quad[(y) \leq(x)] \quad \& \quad[\neg(x)=(y)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{llllll}
0: & x \leq y & \text { from } \quad \mathrm{H}: x: y \\
1: & y \leq x & \text { from } \quad \mathrm{H}: x: y \\
2: & \neg y=x & \text { from } \quad \mathrm{H}: x: y \\
3: & \neg x \leq y & \vee & x-y=0 \quad \text { from } & \underline{55} & \\
4: & \neg y \leq x ; y & \\
5: & \neg y & y-x=0 \quad \text { from } & \underline{55} \rightarrow ; y ; x & \\
5: & \neg x-y=0 & \vee & \neg y-x=0 & \vee & y=x
\end{array} \text { from } \quad \underline{30} ; x ; y
$$

Inferences:

6: $\quad x-y=0 \quad$ by
0: $x \leq y$
3: $\neg x \leq y \quad \vee \quad x-y=0$
7: $\quad y-x=0 \quad$ by
1: $y \leq x$
4: $\neg y \leq x \quad \vee \quad y-x=0$
8: $\quad \neg x-y=0 \quad \vee \quad \neg y-x=0 \quad$ by
2: $\neg y=x$
5: $\neg x-y=0 \quad \vee \quad \neg y-x=0 \quad \vee \quad y=x$
9: $\neg y-x=0 \quad$ by
6: $x-y=0$
8: $\neg x-y=0 \quad \vee \quad \neg y-x=0$
10: $Q E A \quad$ by
7: $y-x=0$
9: $\neg y-x=0$

