Proof of Theorem 72b

The theorem to be proved is

$$x + (y + 0) = (x + y) + 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x + (y+0)) = ((x+y) + 0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg x + (y+0) = (x+y) + 0$$
 from H:x:y

1:
$$y + 0 = y$$
 from $12; y$

2:
$$(x+y) + 0 = x + y$$
 from $12; x + y$

Equality substitutions:

3:
$$\neg y + 0 = y \lor x + (y + 0) = (x + y) + 0 \lor \neg x + (y) = (x + y) + 0$$

Inferences:

4:
$$\neg y + 0 = y \lor \neg (x + y) + 0 = x + y$$
 by

$$0: \neg x + (y+0) = (x+y) + 0$$

3:
$$\neg y + 0 = y \quad \lor \quad x + (y + 0) = (x + y) + 0 \quad \lor \quad \neg (x + y) + 0 = x + y$$

5:
$$\neg (x+y) + 0 = x+y$$
 by

1:
$$y + 0 = y$$

4:
$$\neg y + 0 = y \lor \neg (x + y) + 0 = x + y$$

$$6: QEA$$
 by

2:
$$(x+y) + 0 = x + y$$

5:
$$\neg (x + y) + 0 = x + y$$