Proof of Theorem 72b

The theorem to be proved is
$x+(y+0)=(x+y)+0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x+(y+0))=((x+y)+0)]]$

Special cases of the hypothesis and previous results:
$0: \quad \neg x+(y+0)=(x+y)+0 \quad$ from $\quad \mathrm{H}: x: y$
1: $y+0=y \quad$ from $\underline{12} ; y$
2: $\quad(x+y)+0=x+y \quad$ from $\quad 12 ; x+y$

Equality substitutions:

3: $\neg y+0=y \quad \vee \quad x+(y+0)=(x+y)+0 \quad \vee \quad \neg x+(y)=(x+y)+0$

Inferences:

4: $\neg y+0=y \quad \vee \quad \neg(x+y)+0=x+y \quad$ by $0: \neg x+(y+0)=(x+y)+0$
3: $\neg y+0=y \quad \vee \quad x+(y+0)=(x+y)+0 \quad \vee \quad \neg(x+y)+0=x+y$
5: $\quad \neg(x+y)+0=x+y \quad$ by
1: $y+0=y$
4: $\neg y+0=y \vee \neg(x+y)+0=x+y$
6: $Q E A$ by
2: $(x+y)+0=x+y$
5: $\neg(x+y)+0=x+y$

