Proof of Theorem 71

The theorem to be proved is

$$x \le x + y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

$$(H) \quad [[\neg (x) \le (x+y)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg x \le x + y$$
 from H:x:y

1:
$$x - (x + y) = (x - x) - y$$
 from 69; $x;x;y$

2:
$$x - x = 0$$
 from $19; x$

3:
$$0 - y = 0$$
 from $70; y$

4:
$$x \le x + y \quad \forall \quad \neg x - (x + y) = 0$$
 from 55<-; $x; x + y$

Equality substitutions:

5:
$$\neg x - x = 0 \quad \lor \quad \neg x - (x + y) = (x - x) - y \quad \lor \quad x - (x + y) = (0) - y$$

6:
$$\neg 0 - y = 0 \lor \neg x - (x + y) = 0 - y \lor x - (x + y) = 0$$

Inferences:

7:
$$\neg x - (x + y) = 0$$
 by

$$0: \neg x \leq x + y$$

4:
$$x \le x + y \quad \lor \quad \neg x - (x + y) = 0$$

8:
$$\neg x - x = 0 \lor x - (x + y) = 0 - y$$
 by

1:
$$x - (x + y) = (x - x) - y$$

5:
$$\neg x - x = 0 \quad \lor \quad \neg x - (x + y) = (x - x) - y \quad \lor \quad x - (x + y) = 0 - y$$

9:
$$x - (x + y) = 0 - y$$
 by

2:
$$x - x = 0$$

8:
$$\neg x - x = 0 \quad \lor \quad x - (x + y) = 0 - y$$

10:
$$\neg x - (x + y) = 0 - y \quad \lor \quad x - (x + y) = 0$$
 by

$$3: 0 - y = 0$$

6:
$$\neg 0 - y = 0 \quad \lor \quad \neg x - (x + y) = 0 - y \quad \lor \quad x - (x + y) = 0$$

11:
$$\neg x - (x + y) = 0 - y$$
 by
7: $\neg x - (x + y) = 0$
10: $\neg x - (x + y) = 0 - y$ \lor $x - (x + y) = 0$

12:
$$QEA$$
 by
9: $x - (x + y) = 0 - y$
11: $\neg x - (x + y) = 0 - y$