Proof of Theorem 71

The theorem to be proved is
$x \leq x+y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x) \leq(x+y)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg x \leq x+y \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad x-(x+y)=(x-x)-y \quad$ from $\quad \underline{69} ; x ; x ; y$
2: $x-x=0 \quad$ from $\quad \underline{19} ; x$
3: $\quad 0-y=0 \quad$ from $\quad 70 ; y$
4: $x \leq x+y \quad \vee \neg x-(x+y)=0 \quad$ from $\quad \underline{55^{\leftarrow}} ; x ; x+y$

Equality substitutions:

5: $\neg x-x=0 \quad \vee \quad \neg x-(x+y)=(x-x)-y \quad \vee \quad x-(x+y)=(0)-y$
6: $\quad \neg 0-y=0 \quad \vee \quad \neg x-(x+y)=0-y \quad \vee \quad x-(x+y)=0$

Inferences:

7: $\quad \neg x-(x+y)=0 \quad$ by
0: $\neg x \leq x+y$
4: $x \leq x+y \quad \vee \quad \neg x-(x+y)=0$
8: $\quad \neg x-x=0 \quad \vee \quad x-(x+y)=0-y \quad$ by
1: $x-(x+y)=(x-x)-y$
5: $\neg x-x=0 \vee \neg x-(x+y)=(x-x)-y \quad \vee \quad x-(x+y)=0-y$
9: $\quad x-(x+y)=0-y \quad$ by
2: $x-x=0$
8: $\neg x-x=0 \vee x-(x+y)=0-y$
10: $\neg x-(x+y)=0-y \quad \vee \quad x-(x+y)=0 \quad$ by
3: $0-y=0$
6: $\neg 0-y=0 \quad \vee \neg x-(x+y)=0-y \quad \vee \quad x-(x+y)=0$

11: $\neg x-(x+y)=0-y \quad$ by
7: $\neg x-(x+y)=0$
10: $\neg x-(x+y)=0-y \quad \vee \quad x-(x+y)=0$
12: $Q E A$ by
9: $x-(x+y)=0-y$
11: $\neg x-(x+y)=0-y$

