Proof of Theorem 70i

The theorem to be proved is
$0-x=0 \quad \rightarrow \quad 0-\mathrm{S} x=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(0-x)=(0)] \quad \& \quad[\neg(0-(\mathrm{S} x))=(0)]]$

Special cases of the hypothesis and previous results:
0: $0-x=0 \quad$ from $\quad \mathrm{H}: x$
1: $\neg 0-(\mathrm{S} x)=0 \quad$ from $\quad \mathrm{H}: x$
2: $\mathrm{P}(0-x)=0-(\mathrm{S} x) \quad$ from $\quad 17 ; 0 ; x$
3: $\mathrm{P} 0=0 \quad$ from $\quad \underline{16}$
Equality substitutions:

4: $\neg 0-x=0 \quad \vee \neg \mathrm{P}(0-x)=0-(\mathrm{S} x) \quad \vee \quad \mathrm{P}(0)=0-(\mathrm{S} x)$
5: $\neg \mathrm{P} 0=0 \quad \vee \neg 0-(\mathrm{S} x)=\mathrm{P} 0 \quad \vee \quad 0-(\mathrm{S} x)=0$

Inferences:

6: $\neg \mathrm{P}(0-x)=0-(\mathrm{S} x) \vee 0-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
0: $0-x=0$
4: $\neg 0-x=0 \quad \vee \quad \neg \mathrm{P}(0-x)=0-(\mathrm{S} x) \quad \vee \quad 0-(\mathrm{S} x)=\mathrm{P} 0$
7: $\neg \mathrm{P} 0=0 \quad \vee \neg 0-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
1: $\neg 0-(\mathrm{S} x)=0$
5: $\neg \mathrm{P} 0=0 \quad \vee \quad \neg 0-(\mathrm{S} x)=\mathrm{P} 0 \quad \vee \quad 0-(\mathrm{S} x)=0$
8: $0-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
2: $\mathrm{P}(0-x)=0-(\mathrm{S} x)$
6: $\neg \mathrm{P}(0-x)=0-(\mathrm{S} x) \quad \vee \quad 0-(\mathrm{S} x)=\mathrm{P} 0$
9: $\quad \neg 0-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
3: $\mathrm{P} 0=0$
7: $\neg \mathrm{P} 0=0 \quad \vee \quad \neg 0-(\mathrm{S} x)=\mathrm{P} 0$
10: $Q E A$ by
8: $0-(\mathrm{S} x)=\mathrm{P} 0$
9: $\neg 0-(\mathrm{S} x)=\mathrm{P} 0$

