Proof of Theorem 69b

The theorem to be proved is

$$x - (y + 0) = (x - y) - 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (x - (y + 0)) = ((x - y) - 0)]]$$

Special cases of the hypothesis and previous results:

0: $\neg x - (y + 0) = (x - y) - 0$ from H:x:y 1: y + 0 = y from <u>12</u>;y 2: (x - y) - 0 = x - y from <u>17</u>;x - y

Equality substitutions:

3:
$$\neg y + 0 = y \lor x - (y + 0) = (x - y) - 0 \lor \neg x - (y) = (x - y) - 0$$

Inferences:

4:
$$\neg y + 0 = y \lor \neg (x - y) - 0 = x - y$$
 by
0: $\neg x - (y + 0) = (x - y) - 0$
3: $\neg y + 0 = y \lor x - (y + 0) = (x - y) - 0 \lor \neg (x - y) - 0 = x - y$

- 5: $\neg (x y) 0 = x y$ by 1: y + 0 = y4: $\neg y + 0 = y$ \lor $\neg (x - y) - 0 = x - y$
- 6: QEA by 2: (x - y) - 0 = x - y5: $\neg (x - y) - 0 = x - y$