Proof of Theorem 69b

The theorem to be proved is
$x-(y+0)=(x-y)-0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x-(y+0))=((x-y)-0)]]$

Special cases of the hypothesis and previous results:

0: $\neg x-(y+0)=(x-y)-0 \quad$ from $\quad \mathrm{H}: x: y$
1: $y+0=y \quad$ from $\underline{12} ; y$
2: $\quad(x-y)-0=x-y \quad$ from $\quad 17 ; x-y$

Equality substitutions:

3: $\neg y+0=y \quad \vee \quad x-(y+0)=(x-y)-0 \quad \vee \quad \neg x-(y)=(x-y)-0$

Inferences:

4: $\neg y+0=y \quad \vee \quad \neg(x-y)-0=x-y \quad$ by $0: \neg x-(y+0)=(x-y)-0$
3: $\neg y+0=y \quad \vee \quad x-(y+0)=(x-y)-0 \quad \vee \quad \neg(x-y)-0=x-y$
5: $\quad \neg(x-y)-0=x-y \quad$ by
1: $y+0=y$
4: $\neg y+0=y \quad \vee \neg(x-y)-0=x-y$
6: $Q E A$ by
2: $(x-y)-0=x-y$
5: $\neg(x-y)-0=x-y$

