Proof of Theorem 67

The theorem to be proved is

$$x = y \rightarrow y = x + (y - x)$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) = (y)] \& [\neg (y) = (x + (y - x))]]$$

Special cases of the hypothesis and previous results:

0:
$$y = x$$
 from H:x:y

1:
$$\neg x + (y - x) = y$$
 from H:x:y

2:
$$y - y = 0$$
 from 19; y

3:
$$x + 0 = x$$
 from 12; x

Equality substitutions:

4:
$$\neg y = x \lor x + (y - x) = y \lor \neg x + (x - x) = x$$

5:
$$\neg y = x \quad \lor \quad \neg y - y = 0 \quad \lor \quad x - x = 0$$

6:
$$\neg x - x = 0 \quad \lor \quad x + (x - x) = x \quad \lor \quad \neg x + (0) = x$$

Inferences:

7:
$$x + (y - x) = y \quad \lor \quad \neg x + (x - x) = x$$
 by

0:
$$y = x$$

4:
$$\neg y = x \quad \lor \quad x + (y - x) = y \quad \lor \quad \neg x + (x - x) = x$$

8:
$$\neg y - y = 0 \lor x - x = 0$$
 by

0:
$$y = x$$

5:
$$\neg y = x \quad \lor \quad \neg y - y = 0 \quad \lor \quad x - x = 0$$

9:
$$\neg x + (x - x) = x$$
 by

1:
$$\neg x + (y - x) = y$$

7:
$$x + (y - x) = y \quad \lor \quad \neg x + (x - x) = x$$

10:
$$x - x = 0$$
 by

2:
$$y - y = 0$$

8:
$$\neg y - y = 0 \lor x - x = 0$$

- 11: $\neg x x = 0 \lor x + (x x) = x$ by
 - 3: x + 0 = x
 - 6: $\neg x x = 0 \quad \lor \quad x + (x x) = x \quad \lor \quad \neg x + 0 = x$
- 12: $\neg x x = 0$ by
 - 9: $\neg x + (x x) = x$
 - 11: $\neg x x = 0 \quad \lor \quad x + (x x) = x$
- 13: QEA by
 - 10: x x = 0
 - 12: $\neg x x = 0$