Proof of Theorem 64b

The theorem to be proved is

 $P0 \le 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (P0) \le (0)]]$

Special cases of the hypothesis and previous results:

- 0: $\neg P0 \le 0$ from H
- 1: P0 = 0 from <u>16</u>
- 2: $0 \le 0$ from <u>60</u>;0

Equality substitutions:

3:
$$\neg P0 = 0 \lor P0 \le 0 \lor \neg 0 \le 0$$

Inferences:

- 4: $\neg P0 = 0 \lor \neg 0 \le 0$ by
 - 0: $\neg P0 \le 0$
 - 3: $\neg P0 = 0 \quad \lor \quad P0 \le 0 \quad \lor \quad \neg \ 0 \le 0$
- 5: $\neg 0 \le 0$ by
 - 1: P0 = 0
 - 4: $\neg P0 = 0 \lor \neg 0 \le 0$
- 6: QEA by
 - 2: $0 \le 0$
 - 5: $\neg 0 \le 0$