Proof of Theorem 63

The theorem to be proved is

 $x \leq \mathbf{S} x$

Suppose the theorem does not hold. Then, with the variables held fixed,

 $(\mathbf{H}) \quad [[\neg (x) \le (\mathbf{S}x)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg x \leq Sx$$
 from H:x
1: $P(x-x) = x - (Sx)$ from 17;x;x
2: $x - x = 0$ from 19;x
3: $P0 = 0$ from 16
4: $x \leq Sx \lor \neg x - (Sx) = 0$ from 55<;x;Sx

Equality substitutions:

5:
$$\neg x - x = 0 \lor \neg P(x - x) = x - (Sx) \lor P(0) = x - (Sx)$$

6: $\neg P0 = 0 \lor \neg x - (Sx) = P0 \lor x - (Sx) = 0$

Inferences:

7:
$$\neg x - (Sx) = 0$$
 by
0: $\neg x \le Sx$
4: $x \le Sx \lor \neg x - (Sx) = 0$
8: $\neg x - x = 0 \lor x - (Sx) = P0$ by
1: $P(x - x) = x - (Sx)$
5: $\neg x - x = 0 \lor \neg P(x - x) = x - (Sx) \lor x - (Sx) = P0$
9: $x - (Sx) = P0$ by
2: $x - x = 0$
8: $\neg x - x = 0 \lor x - (Sx) = P0$
10: $\neg x - (Sx) = P0 \lor x - (Sx) = 0$ by
3: $P0 = 0$
6: $\neg P0 = 0 \lor \neg x - (Sx) = P0 \lor x - (Sx) = 0$

- 11: $\neg x (Sx) = P0$ by 7: $\neg x - (Sx) = 0$ 10: $\neg x - (Sx) = P0 \lor x - (Sx) = 0$
- 12: QEA by 9: x - (Sx) = P011: $\neg x - (Sx) = P0$