Proof of Theorem 63

The theorem to be proved is
$x \leq \mathrm{S} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x) \leq(\mathrm{S} x)]]$

Special cases of the hypothesis and previous results:

0: $\neg x \leq \mathrm{S} x \quad$ from $\mathrm{H}: x$
1: $\mathrm{P}(x-x)=x-(\mathrm{S} x)$ from $\underline{17} ; x ; x$
2: $x-x=0 \quad$ from $\quad \underline{19} ; x$
3: $\mathrm{P} 0=0 \quad$ from $\quad 16$
4: $x \leq \mathrm{S} x \quad \vee \quad \neg x-(\mathrm{S} x)=0 \quad$ from $\quad \underline{55}^{\leftarrow-} ; x ; \mathrm{S} x$

Equality substitutions:

5: $\neg x-x=0 \quad \vee \neg \mathrm{P}(x-x)=x-(\mathrm{S} x) \quad \vee \quad \mathrm{P}(0)=x-(\mathrm{S} x)$
6: $\quad \neg \mathrm{P} 0=0 \quad \vee \quad \neg x-(\mathrm{S} x)=\mathrm{P} 0 \quad \vee \quad x-(\mathrm{S} x)=0$

Inferences:

7: $\quad \neg x-(\mathrm{S} x)=0 \quad$ by
$0: \neg x \leq \mathrm{S} x$
4: $x \leq \mathrm{S} x \quad \vee \quad \neg x-(\mathrm{S} x)=0$
8: $\quad \neg x-x=0 \quad \vee \quad x-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
1: $\mathrm{P}(x-x)=x-(\mathrm{S} x)$
5: $\neg x-x=0 \quad \vee \neg \mathrm{P}(x-x)=x-(\mathrm{S} x) \quad \vee \quad x-(\mathrm{S} x)=\mathrm{P} 0$
9: $\quad x-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
2: $x-x=0$
8: $\neg x-x=0 \quad \vee \quad x-(\mathrm{S} x)=\mathrm{P} 0$
10: $\neg x-(\mathrm{S} x)=\mathrm{P} 0 \quad \vee \quad x-(\mathrm{S} x)=0 \quad$ by
3: $\mathrm{P} 0=0$
6: $\neg \mathrm{P} 0=0 \quad \vee \quad \neg x-(\mathrm{S} x)=\mathrm{P} 0 \quad \vee \quad x-(\mathrm{S} x)=0$

11: $\neg x-(\mathrm{S} x)=\mathrm{P} 0 \quad$ by
7: $\neg x-(\mathrm{S} x)=0$
10: $\neg x-(\mathrm{S} x)=\mathrm{P} 0 \vee x-(\mathrm{S} x)=0$
12: $Q E A$ by
9: $x-(\mathrm{S} x)=\mathrm{P} 0$
11: $\neg x-(\mathrm{S} x)=\mathrm{P} 0$

