Proof of Theorem 62

The theorem to be proved is
$x<y \quad \vee \quad x=y \quad \rightarrow \quad x \leq y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x)<(y) \quad \vee \quad(x)=(y)] \quad \& \quad[\neg(x) \leq(y)]]$

Special cases of the hypothesis and previous results:
$\begin{array}{lllll}0: & x<y \quad \vee & y=x \quad \text { from } \quad \mathrm{H}: x: y \\ 1: & \neg x \leq y & \text { from } \quad \mathrm{H}: x: y \\ 2: & \neg x<y & \vee \quad x \leq y \quad \text { from } & \\ 3: & \underline{56} \rightarrow\end{array} \quad x ; y$

Equality substitutions:

4: $\neg y=x \quad \vee \quad x \leq y \quad \vee \quad \neg x \leq x$

Inferences:

5: $\quad \neg x<y \quad$ by
1: $\neg x \leq y$
2: $\neg x<y \quad \vee \quad x \leq y$
6: $\quad \neg y=x \quad \vee \quad \neg x \leq x \quad$ by
1: $\neg x \leq y$
4: $\neg y=x \quad \vee \quad x \leq y \quad \vee \quad \neg x \leq x$
7: $\neg y=x \quad$ by
3: $x \leq x$
6: $\neg y=x \quad \vee \quad \neg x \leq x$
8: $\quad y=x \quad$ by
5: $\neg x<y$
$0: x<y \vee \quad y=x$
9: $Q E A$ by
7: $\neg y=x$
8: $y=x$

