Proof of Theorem 61

The theorem to be proved is

$$x \leq y \quad \rightarrow \quad x < y \quad \lor \quad x = y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x) \le (y)]$$
 & $[\neg (x) < (y)]$ & $[\neg (x) = (y)]]$

Special cases of the hypothesis and previous results:

- 0: $x \le y$ from H:x:y
- 1: $\neg x < y$ from H:x:y
- 2: $\neg y = x$ from H:x:y
- 3: $x < y \quad \forall \quad \neg \ x \leq y \quad \forall \quad y = x \quad \text{from} \quad \underline{\bf 56}^{<-}; x; y$

Inferences:

4:
$$x < y \quad \lor \quad y = x$$
 by

$$0: x \leq y$$

3:
$$x < y \quad \lor \quad \neg \ \underline{x} \leq y \quad \lor \quad y = x$$

5:
$$y = x$$
 by

1:
$$\neg x < y$$

$$4: \ x < y \quad \lor \quad y = x$$

6:
$$QEA$$
 by

$$2: \neg y = x$$

5:
$$y = x$$