Proof of Theorem 61

The theorem to be proved is
$x \leq y \quad \rightarrow \quad x<y \quad \vee \quad x=y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(y)] \quad \& \quad[\neg(x)<(y)] \quad \& \quad[\neg(x)=(y)]]$

Special cases of the hypothesis and previous results:

0: $x \leq y$ from $\mathrm{H}: x: y$
1: $\neg x<y$ from $\quad \mathrm{H}: x: y$
2: $\neg y=x \quad$ from $\quad \mathrm{H}: x: y$
3: $x<y \quad \vee \neg x \leq y \quad \vee \quad y=x \quad$ from $\quad \underline{56}^{\leftarrow} ; x ; y$

Inferences:

4: $x<y \quad \vee \quad y=x \quad$ by
0: $x \leq y$
3: $x<y \quad \vee \quad \neg x \leq y \quad \vee \quad y=x$
5: $\quad y=x \quad$ by
1: $\neg x<y$
4: $x<y \vee \quad y=x$
6: $Q E A$ by
2: $\neg y=x$
5: $y=x$

