Proof of Theorem 59

The theorem to be proved is
$\neg \mathrm{S} x \leq x$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[(\mathrm{S} x) \leq(x)]]$

Special cases of the hypothesis and previous results:

0: $\quad \mathrm{S} x \leq x \quad$ from $\mathrm{H}: x$
1: $\neg \mathrm{S} x \leq x \quad \vee \quad(\mathrm{~S} x)-x=0 \quad$ from $\quad \underline{55} \rightarrow \mathrm{~S} x ; x$
2: $\neg(\mathrm{S} x)-x=0 \quad$ from $\quad 21 ; x$

Inferences:

3: $\quad(\mathrm{S} x)-x=0 \quad$ by
0: $\mathrm{S} x \leq x$
1: $\neg \mathrm{S} x \leq x \quad \vee \quad(\mathrm{~S} x)-x=0$
4: $Q E A$ by
2: $\neg(\mathrm{S} x)-x=0$
3: $(\mathrm{S} x)-x=0$

