Proof of Theorem 58

The theorem to be proved is

 $0 \leq x$

Suppose the theorem does not hold. Then, with the variables held fixed,

 $(\mathbf{H}) \quad [[\neg (0) \le (x)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg 0 \le x$$
 from H:x
1: $0 \le x \lor \neg 0 - x = 0$ from 55^{<-};0;x
2: $0 - x = 0 \lor x + (0 - x) = 0$ from 23;0;x
3: $\neg x + (0 - x) = 0 \lor 0 - x = 0$ from 15;x;0 - x

Inferences:

- 4: $\neg 0 x = 0$ by 0: $\neg 0 \le x$ 1: $0 \le x \lor \neg 0 - x = 0$
- 5: x + (0 x) = 0 by 4: $\neg 0 - x = 0$ 2: $0 - x = 0 \lor x + (0 - x) = 0$
- 6: $\neg x + (0 x) = 0$ by 4: $\neg 0 - x = 0$ 3: $\neg x + (0 - x) = 0 \lor 0 - x = 0$
- 7: QEA by 5: x + (0 - x) = 06: $\neg x + (0 - x) = 0$