Proof of Theorem 58

The theorem to be proved is
$0 \leq x$
Suppose the theorem does not hold. Then, with the variables held fixed, (H) $\quad[[\neg(0) \leq(x)]]$

Special cases of the hypothesis and previous results:

0: $\neg 0 \leq x \quad$ from $\quad \mathrm{H}: x$
1: $0 \leq x \quad \vee \neg 0-x=0 \quad$ from $\quad \underline{55}^{\leftarrow} ; 0 ; x$
2: $0-x=0 \quad \vee \quad x+(0-x)=0 \quad$ from $\quad 23 ; 0 ; x$
3: $\neg x+(0-x)=0 \quad \vee \quad 0-x=0 \quad$ from $\quad \underline{15} ; x ; 0-x$

Inferences:

4: $\neg 0-x=0 \quad$ by
0 : $\neg 0 \leq x$
1: $0 \leq x \quad \vee \quad \neg 0-x=0$
5: $\quad x+(0-x)=0 \quad$ by
4: $\neg 0-x=0$
2: $0-x=0 \quad \vee \quad x+(0-x)=0$
6: $\quad \neg x+(0-x)=0 \quad$ by
4: $\neg 0-x=0$
3: $\neg x+(0-x)=0 \quad \vee \quad 0-x=0$
7: $Q E A$ by
5: $x+(0-x)=0$
6: $\neg x+(0-x)=0$

