Proof of Theorem 57

The theorem to be proved is
$x \leq 0 \quad \rightarrow \quad x=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(0)] \quad \& \quad[\neg(x)=(0)]]$

Special cases of the hypothesis and previous results:
$0: x \leq 0 \quad$ from $\mathrm{H}: x$
1: $\quad \neg 0=x \quad$ from $\quad \mathrm{H}: x$
2: $\neg x \leq 0 \quad \vee \quad x-0=0 \quad$ from $\quad \underline{55} \rightarrow x ; 0$
3: $x-0=x \quad$ from $\quad 17 ; x$

Equality substitutions:

4: $\quad \neg x-0=0 \quad \vee \quad \neg x-0=x \quad \vee \quad 0=x$

Inferences:

5: $x-0=0 \quad$ by
$0: x \leq 0$
2: $\neg x \leq 0 \vee x-0=0$
6: $\quad \neg x-0=0 \quad \vee \quad \neg x-0=x \quad$ by
1: $\neg 0=x$
4: $\neg x-0=0 \quad \vee \quad \neg x-0=x \quad \vee \quad 0=x$
7: $\quad \neg x-0=0 \quad$ by
$3: x-0=x$
6: $\neg x-0=0 \quad \vee \neg x-0=x$
8: $Q E A$ by
5: $x-0=0$
$7: \neg x-0=0$

