Proof of Theorem 57

The theorem to be proved is

 $x \leq 0 \quad \rightarrow \quad x = 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(x) \le (0)] \& [\neg (x) = (0)]]$

Special cases of the hypothesis and previous results:

0: $x \le 0$ from H:x 1: $\neg 0 = x$ from H:x 2: $\neg x \le 0 \lor x - 0 = 0$ from $55^{\rightarrow};x;0$ 3: x - 0 = x from 17;x

Equality substitutions:

4: $\neg x - 0 = 0 \lor \neg x - 0 = x \lor 0 = x$

Inferences:

5:
$$x - 0 = 0$$
 by
0: $x \le 0$
2: $\neg x \le 0 \lor x - 0 = 0$
6: $\neg x - 0 = 0 \lor \neg x - 0 = x$ by
1: $\neg 0 = x$
4: $\neg x - 0 = 0 \lor \neg x - 0 = x \lor 0 = x$
7: $\neg x - 0 = 0$ by
3: $x - 0 = x$
6: $\neg x - 0 = 0 \lor \neg x - 0 = x$

8: QEA by 5: x - 0 = 07: $\neg x - 0 = 0$