Proof of Theorem 46

The theorem to be proved is

$$\dot{\neg}x = 0 \quad \lor \quad \dot{\neg}x = S0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (\dot{\neg} x) = (0)] \& [\neg (\dot{\neg} x) = (S0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg \dot{\neg} x = 0$$
 from H:x

1:
$$\neg \dot{\neg} x = S0$$
 from H:x

2:
$$C((x, S0, 0)) = \dot{\neg}x$$
 from 43; x

3:
$$C((x, S0, 0)) = 0 \quad \lor \quad C((x, S0, 0)) = S0$$
 from 39;x

Equality substitutions:

4:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = 0 \lor \dot{\neg}x = 0$$

5:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = S0 \lor \dot{\neg}x = S0$$

Inferences:

6:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = 0$$
 by

$$0: \neg \dot{\neg} x = 0$$

4:
$$\neg C((x, S0, 0)) = \dot{\neg}x \quad \lor \quad \neg C((x, S0, 0)) = 0 \quad \lor \quad \dot{\neg}x = 0$$

7:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = S0$$
 by

1:
$$\neg \dot{\neg} x = S0$$

5:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = S0 \lor \dot{\neg}x = S0$$

8:
$$\neg C((x, S0, 0)) = 0$$
 by

2:
$$C((x, S0, 0)) = \dot{\neg}x$$

6:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = 0$$

9:
$$\neg C((x, S0, 0)) = S0$$
 by

2:
$$C((x, S0, 0)) = \dot{\neg}x$$

7:
$$\neg C((x, S0, 0)) = \dot{\neg}x \lor \neg C((x, S0, 0)) = S0$$

10:
$$C((x, S0, 0)) = S0$$
 by

8:
$$\neg C((x, S0, 0)) = 0$$

3:
$$C((x, S0, 0)) = 0 \quad \lor \quad C((x, S0, 0)) = S0$$

11:
$$QEA$$
 by

9:
$$\neg C((x, S0, 0)) = S0$$

10:
$$C((x, S0, 0)) = S0$$