Proof of Theorem 40

The theorem to be proved is

C(x, 0, 0) = 0

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (C((x,0,0))) = (0)]]$

Special cases of the hypothesis and previous results:

- 0: $\neg C((x, 0, 0)) = 0$ from H:x
- 1: $0 = x \lor S(Px) = x$ from <u>22</u>;x
- 2: C((0,0,0)) = 0 from <u>33</u>;0;0;Px
- 3: C((S(Px), 0, 0)) = 0 from <u>33</u>;0;0;Px

Equality substitutions:

4:
$$\neg \mathbf{S}(\mathbf{P}x) = x \quad \lor \quad \neg \mathbf{C}((\mathbf{S}(\mathbf{P}x), 0, 0)) = 0 \quad \lor \quad \mathbf{C}((x, 0, 0)) = 0$$

5: $\neg x = 0 \lor C(((x), 0, 0)) = 0 \lor \neg C(((0), 0, 0)) = 0$

Inferences:

6:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, 0)) = 0$$
 by
0: $\neg C((x, 0, 0)) = 0$
4: $\neg S(Px) = x \lor \neg C((S(Px), 0, 0)) = 0 \lor C((x, 0, 0)) = 0$

- 7: $\neg 0 = x \lor \neg C((0,0,0)) = 0$ by 0: $\neg C((x,0,0)) = 0$ 5: $\neg 0 = x \lor C((x,0,0)) = 0 \lor \neg C((0,0,0)) = 0$
- 8: $\neg 0 = x$ by 2: C((0,0,0)) = 07: $\neg 0 = x \lor \neg C((0,0,0)) = 0$

9:
$$\neg S(Px) = x$$
 by
3: $C((S(Px), 0, 0)) = 0$
6: $\neg S(Px) = x \lor \neg C((S(Px), 0, 0)) = 0$

- 10: S(Px) = x by $8: \neg 0 = x$ $1: 0 = x \lor S(Px) = x$
- 11: QEA by 9: $\neg S(Px) = x$ 10: S(Px) = x