Proof of Theorem 40

The theorem to be proved is
$\mathrm{C}(x, 0,0)=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{C}((x, 0,0)))=(0)]]$

Special cases of the hypothesis and previous results:

0: $\neg \mathrm{C}((x, 0,0))=0 \quad$ from $\quad \mathrm{H}: x$
1: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22 ; ~} x$
2: $\quad \mathrm{C}((0,0,0))=0 \quad$ from $\quad 33 ; 0 ; 0 ; \mathrm{P} x$
3: $\quad \mathrm{C}((\mathrm{S}(\mathrm{P} x), 0,0))=0 \quad$ from $\quad 33 ; 0 ; 0 ; \mathrm{P} x$
Equality substitutions:

4: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), 0,0))=0 \quad \vee \quad \mathrm{C}((x, 0,0))=0$
5: $\neg x=0 \vee \mathrm{C}(((x), 0,0))=0 \quad \vee \quad \neg \mathrm{C}(((0), 0,0))=0$

Inferences:

6: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), 0,0))=0 \quad$ by
$0: \neg \mathrm{C}((x, 0,0))=0$
4: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), 0,0))=0 \quad \vee \quad \mathrm{C}((x, 0,0))=0$
7: $\neg 0=x \quad \vee \quad \neg \mathrm{C}((0,0,0))=0 \quad$ by
$0: \neg \mathrm{C}((x, 0,0))=0$
5: $\neg 0=x \quad \vee \quad \mathrm{C}((x, 0,0))=0 \quad \vee \quad \neg \mathrm{C}((0,0,0))=0$
8: $\quad \neg 0=x \quad$ by
2: $\mathrm{C}((0,0,0))=0$
$7: \neg 0=x \quad \vee \quad \neg \mathrm{C}((0,0,0))=0$
9: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad$ by
3: $\mathrm{C}((\mathrm{S}(\mathrm{P} x), 0,0))=0$
6: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), 0,0))=0$

10: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
8: $\neg 0=x$
$1: 0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
11: $Q E A$ by
9: $\neg \mathrm{S}(\mathrm{P} x)=x$
10: $\mathrm{S}(\mathrm{P} x)=x$

