Proof of Theorem 38

The theorem to be proved is

$$C(x, 0, S0) = 0 \quad \lor \quad C(x, 0, S0) = S0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[\neg (C((x, 0, S0))) = (0)]$$
 & $[\neg (C((x, 0, S0))) = (S0)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg C((x, 0, S0)) = 0$$
 from H:x

1:
$$\neg C((x, 0, S0)) = S0$$
 from H:x

2:
$$0 = x \lor S(Px) = x$$
 from $22;x$

3:
$$C((0,0,S0)) = 0$$
 from 33;0;S0;Px

4:
$$C((S(Px), 0, S0)) = S0$$
 from 33;0;S0;Px

Equality substitutions:

5:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, S0)) = S0 \lor C((x, 0, S0)) = S0$$

6:
$$\neg x = 0 \lor C(((x), 0, S0)) = 0 \lor \neg C(((0), 0, S0)) = 0$$

Inferences:

7:
$$\neg 0 = x \lor \neg C((0, 0, S0)) = 0$$
 by

0:
$$\neg C((x, 0, S0)) = 0$$

6:
$$\neg 0 = x \lor \mathbf{C}((x, 0, \mathbf{S0})) = \mathbf{0} \lor \neg \mathbf{C}((0, 0, \mathbf{S0})) = \mathbf{0}$$

8:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, S0)) = S0$$
 by

1:
$$\neg C((x, 0, S0)) = S0$$

5:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, S0)) = S0 \lor C((x, 0, S0)) = S0$$

9:
$$\neg 0 = x$$
 by

3:
$$C((0,0,S0)) = 0$$

7:
$$\neg 0 = x \lor \neg C((0, 0, S0)) = 0$$

10:
$$\neg S(Px) = x$$
 by

4:
$$C((S(Px), 0, S0)) = S0$$

8:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, S0)) = S0$$

11:
$$S(Px) = x$$
 by

9:
$$\neg 0 = x$$

$$2: \ \mathbf{0} = \mathbf{x} \quad \lor \quad \mathbf{S}(\mathbf{P}\mathbf{x}) = \mathbf{x}$$

12:
$$QEA$$
 by

$$10: \neg S(Px) = x$$

11:
$$S(Px) = x$$