Proof of Theorem 36

The theorem to be proved is

$$C(x, 0, S0) = 0 \quad \leftrightarrow \quad x = 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(C((x,0,S0))) = (0) \lor \neg (C((x,0,S0))) = (0)] \& [(C((x,0,S0))) = (0)] \lor (x) = (0)] \& [\neg (x) = (0) \lor \neg (C((x,0,S0))) = (0)] \& [\neg (x) = (0) \lor (x) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$C((x, 0, S0)) = 0 \lor 0 = x$$
 from H:x

1:
$$\neg 0 = x \lor \neg C((x, 0, S0)) = 0$$
 from H:x

2:
$$0 = x \lor S(Px) = x$$
 from $22;x$

3:
$$C((0,0,S0)) = 0$$
 from 33;0;S0;Px

4:
$$C((S(Px), 0, S0)) = S0$$
 from 33;0;S0;Px

5:
$$\neg S0 = 0$$
 from 3;0

Equality substitutions:

6:
$$\neg C((x, 0, S0)) = 0 \lor \neg C((x, 0, S0)) = S0 \lor 0 = S0$$

7:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, S0)) = S0 \lor C((x, 0, S0)) = S0$$

8:
$$\neg x = 0 \lor C(((x), 0, S0)) = 0 \lor \neg C(((0), 0, S0)) = 0$$

Inferences:

9:
$$\neg 0 = x \lor C((x, 0, S0)) = 0$$
 by

3:
$$C((0,0,S0)) = 0$$

8:
$$\neg 0 = x \lor C((x, 0, S0)) = 0 \lor \neg C((0, 0, S0)) = 0$$

10:
$$\neg S(Px) = x \lor C((x, 0, S0)) = S0$$
 by

4:
$$C((S(Px), 0, S0)) = S0$$

7:
$$\neg S(Px) = x \lor \neg C((S(Px), 0, S0)) = S0 \lor C((x, 0, S0)) = S0$$

11:
$$\neg C((x, 0, S0)) = 0 \lor \neg C((x, 0, S0)) = S0$$
 by

5:
$$\neg S0 = 0$$

6:
$$\neg C((x, 0, S0)) = 0 \lor \neg C((x, 0, S0)) = S0 \lor S0 = 0$$

CLAIM: $\neg 0 = x$ Suppose not. Then

12:
$$0 = x$$

13:
$$\neg C((x, 0, S0)) = 0$$
 by

12:
$$0 = x$$

1:
$$\neg 0 = x \lor \neg C((x, 0, S0)) = 0$$

14:
$$C((x, 0, S0)) = 0$$
 by

12:
$$0 = x$$

9:
$$\neg 0 = x \lor C((x, 0, S0)) = 0$$

15: $\neg 0 = x$ The CLAIM is proved, and 12–14 will not be used after this:

13:
$$\neg C((x, 0, S0)) = 0$$

14:
$$C((x, 0, S0)) = 0$$

16:
$$C((x, 0, S0)) = 0$$
 by

15:
$$\neg 0 = x$$

0:
$$C((x, 0, S0)) = 0 \lor 0 = x$$

17:
$$S(Px) = x$$
 by

15:
$$\neg 0 = x$$

2:
$$0 = x \lor S(Px) = x$$

18:
$$\neg C((x, 0, S0)) = S0$$
 by

16:
$$C((x, 0, S0)) = 0$$

11:
$$\neg C((x, 0, S0)) = 0 \lor \neg C((x, 0, S0)) = S0$$

19:
$$C((x, 0, S0)) = S0$$
 by

17:
$$S(Px) = x$$

10:
$$\neg S(Px) = x \lor C((x, 0, S0)) = S0$$

$$20$$
: QEA by

18:
$$\neg C((x, 0, S0)) = S0$$

19:
$$C((x, 0, S0)) = S0$$