Proof of Theorem 35

The theorem to be proved is

$$C(x, y, z) \neq z \rightarrow x = 0 \& C(x, y, z) = y$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (C((x,y,z))) = (z)]$$
 & $[\neg (x) = (0) \lor \neg (C((x,y,z))) = (y)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg C((x, y, z)) = z$$
 from H:x:y:z

1:
$$\neg 0 = x \lor \neg C((x, y, z)) = y$$
 from H:x:y:z

2:
$$0 = x \lor C((x, y, z)) = z$$
 from 34; $x;y;z$

3:
$$C((0, y, z)) = y$$
 from 33; $y;z$

Equality substitutions:

4:
$$\neg 0 = x \lor \neg C((0, y, z)) = y \lor C((x, y, z)) = y$$

Inferences:

5:
$$0 = x$$
 by

0:
$$\neg C((x, y, z)) = z$$

2:
$$0 = x \lor C((x, y, z)) = z$$

6:
$$\neg 0 = x \lor C((x, y, z)) = y$$
 by

3:
$$C((0, y, z)) = y$$

4:
$$\neg 0 = x \lor \neg C((0, y, z)) = y \lor C((x, y, z)) = y$$

7:
$$\neg C((x, y, z)) = y$$
 by

5:
$$0 = x$$

1:
$$\neg 0 = x \lor \neg C((x, y, z)) = y$$

8:
$$C((x, y, z)) = y$$
 by

5:
$$0 = x$$

6:
$$\neg 0 = x \lor C((x, y, z)) = y$$

9:
$$QEA$$
 by

7:
$$\neg C((x, y, z)) = y$$

8:
$$C((x, y, z)) = y$$