Proof of Theorem 34

The theorem to be proved is
$x \neq 0 \quad \rightarrow \quad \mathrm{C}(x, y, z)=z$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(0)] \quad \& \quad[\neg(\mathrm{C}((x, y, z)))=(z)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg 0=x \quad$ from $\quad \mathrm{H}: x: y: z$
1: $\neg \mathrm{C}((x, y, z))=z \quad$ from $\mathrm{H}: x: y: z$
2: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22 ;} ; x$
3: $\quad \mathrm{C}((\mathrm{S}(\mathrm{P} x), y, z))=z \quad$ from $\quad 33 ; y ; z ; \mathrm{P} x$

Equality substitutions:

4: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), y, z))=z \quad \vee \quad \mathrm{C}((x, y, z))=z$

Inferences:

5: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
0 : $\neg 0=x$
2: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
6: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), y, z))=z \quad$ by
1: $\neg \mathrm{C}((x, y, z))=z$
4: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), y, z))=z \quad \vee \quad \mathrm{C}((x, y, z))=z$
7: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad$ by
3: $\mathrm{C}((\mathrm{S}(\mathrm{P} x), y, z))=z$
6: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \mathrm{C}((\mathrm{S}(\mathrm{P} x), y, z))=z$
8: $Q E A$ by
5: $\mathrm{S}(\mathrm{P} x)=x$
7: $\neg \mathrm{S}(\mathrm{P} x)=x$

