Proof of Theorem 34

The theorem to be proved is

 $x \neq 0 \quad \rightarrow \quad \mathcal{C}(x,y,z) = z$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (x) = (0)] \& [\neg (C((x, y, z))) = (z)]]$

Special cases of the hypothesis and previous results:

- $0: \neg 0 = x \qquad \text{from} \quad \text{H}:x:y:z$
- 1: $\neg C((x, y, z)) = z$ from H:x:y:z
- 2: $0 = x \lor S(Px) = x$ from <u>22</u>;x
- 3: C((S(Px), y, z)) = z from <u>33</u>;y;z;Px

Equality substitutions:

4:
$$\neg S(Px) = x \lor \neg C((S(Px), y, z)) = z \lor C((x, y, z)) = z$$

Inferences:

5:
$$S(Px) = x$$
 by
0: $\neg 0 = x$
2: $0 = x \lor S(Px) = x$

- 6: $\neg S(Px) = x \lor \neg C((S(Px), y, z)) = z$ by 1: $\neg C((x, y, z)) = z$ 4: $\neg S(Px) = x \lor \neg C((S(Px), y, z)) = z \lor C((x, y, z)) = z$
- 7: $\neg S(Px) = x$ by 3: C((S(Px), y, z)) = z6: $\neg S(Px) = x \lor \neg C((S(Px), y, z)) = z$
- 8: QEA by 5: S(Px) = x7: $\neg S(Px) = x$