Proof of Theorem 30

The theorem to be proved is
$x-y=0 \quad \& \quad y-x=0 \quad \rightarrow \quad x=y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x-y)=(0)] \quad \& \quad[(y-x)=(0)] \quad \& \quad[\neg(x)=(y)]]$

Special cases of the hypothesis and previous results:
$\begin{array}{llll}0: & x-y=0 & \text { from } \quad \mathrm{H}: x: y \\ 1: & y-x=0 & \text { from } \quad \mathrm{H}: x: y \\ \text { 2: } & \neg y=x & \text { from } \quad \mathrm{H}: x: y \\ 3: & y=x \quad \vee & \neg y-x=0 \quad \vee & \neg x-y=0 \quad \text { from } \quad \underline{29} ; x ; y\end{array}$ Inferences:

4: $y=x \quad \vee \quad \neg y-x=0 \quad$ by 0: $x-y=0$
3: $y=x \quad \vee \quad \neg y-x=0 \quad \vee \quad \neg x-y=0$
5: $\quad y=x \quad$ by
1: $y-x=0$
4: $y=x \quad \vee \quad \neg y-x=0$
6: $Q E A$ by
2: $\neg y=x$
5: $y=x$

